
The Haptic Display of Complex Graphical Environments

 Diego C. Ruspini1, Krasimir Kolarov2 and Oussama Khatib1

Stanford University1

Interval Research Corporation2

Abstract

Force feedback coupled with visual display allows people to
interact intuitively with complex virtual environments. For this
synergy of haptics and graphics to flourish, however, haptic
systems must be capable of modeling environments with the
same richness, complexity and interactivity that can be found
in existing graphic systems. To help meet this challenge, we
have developed a haptic rendering system that allows for the
efficient tactile display of graphical information. The system
uses a common high-level framework to model contact
constraints, surface shading, friction and texture. The multi-
level control system also helps ensure that the haptic device
will remain stable even as the limits of the renderer’s
capabilities are reached.

CR Categories and Subject Descriptors: C.3 [Special
Purpose and Application-Based Systems]: Real-time Systems;
I.3.7 [Three-Dimensional Graphics and Realism]: Virtual
Reality; I.3.4 [Graphics Utilities]: Device Drivers; I.6.8
[Simulation and Modeling]: Distributed.

Additional Keywords: haptic, force feedback, force shading,
contact constraints, fric tion model, haptic texture, virtual
environments.

1 INTRODUCTION

Haptic devices allow physical interaction with virtual
environments, enhancing the ability of their users to perform a
variety of complex computer interaction tasks [7,16,20].
Several technological advances are required, however, for
haptic systems to achieve the ubiquity of graphic systems.

1 Robotics Laboratory, Computer Science Department,
Stanford University, Stanford, CA 94305
ruspini@cs.stanford.edu, khatib@cs.stanford.edu

2 Interval Research Corporation 1801 Page Mill Road,
Building C, Palo Alto, CA 94304
kolarov@interval.com

A successful haptic system must complement existing graphic
devices. Current desktop graphic systems are capable of
rendering over 20,000 shaded and textured polygonal surfaces
at interactive (30Hz) rates. In comparison, most of the current
haptic systems are only capable of representing a few dozen
geometric primitives.

Because visual and tactile tasks are often closely intertwined,
the haptic system should be capable of representing the
surfaces and objects that are commonly found in graphic
environments. These environments are usually composed of
many zero-width polygons, lines and points. The haptic system
should also make use of additional graphical information such
as surface normals and texture maps which add to the
complexity and richness of graphical environments.

Furthermore, graphic models often contain intersecting
surfaces and gaps between primitives, and the topology of the
model is seldom known. The haptic system should avoid, as
much as possible, costly preprocessing steps that decrease the
system’s interactivity, such as those involved in the conversion
or segmentation of a model.

In addition, the haptic controller should be robust and degrade
gracefully as the limits of its performance are reached. Haptic
devices require high controller servo rates—typically over
1000Hz—in order to achieve stability and high disturbance
rejection. Failure to achieve these rates can lead to a system
that is unstable, potentially causing device damage or user
injury.

Finally, the haptic system should provide a high-level interface
that hides many of the details of the haptic rendering process.
Since graphic and haptic environments are often identical, it
would be advantageous if the graphic and haptic specifications
were similar.

This paper describes “HL,” a new haptic interface library. The
Application Programming Interface (API) of thi s library is
almost identical to that of GL, the graphics hardware interface
library of Silicon Graphics workstations. This allows haptic
environments to be quickly and efficiently incorporated into
graphics applications.

The HL library uses a multi-level control system to effectively
simulate contacts with virtual environments. A key element of
this control system is the notion of the virtual “proxy,” similar
to the “god-object” proposed by Zilles and Salisbury [27]. The
virtual proxy is a representative object that substitutes for the
physical finger or probe in the virtual environment. Figure 1
illustrates the motion of the virtual proxy, as the probe’s
position is altered. The motion of the proxy is akin to that of a
robot greedily attempting to move toward a goal. When
unobstructed, the robot moves directly towards the goal. When
the robot encounters an obstacle, direct motion is not possible,
but the robot may still be able to reduce the distance to the
goal by moving along one or more of the constraint surfaces.
The motion is chosen to locally minimize the distance to the

Copyright ©1997 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for
 personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to distribute to lists, requires prior specific
permission and/or a fee.

Copyright Notice
Copyright ©1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F258734.258878&domain=pdf&date_stamp=1997-08-03

goal. When the robot is unable to decrease its distance to the
goal, it stops at the local minimum configuration.

PHYSICAL POSITION PROXY POSITION

Figure 1: Virtual Proxy Example

Since a strong correspondence exists between the movement of
the proxy and robot motion planning, many of the algorithms
used in our implementation were developed originally for
robotics applications. With this interaction model, the task of
the haptic servo controller reduces to minimizing the error
between the configuration of the proxy and the position of the
haptic device. In effect, the haptic device is used to attempt to
physically move the goal to the location of the proxy.

The remainder of this paper is organized as follows: In Section
2, we discuss previous work in haptic rendering. The basic
algorithm employed to update the virtual proxy’s position is
presented in Section 3. In Section 4, we discuss the
implementation of force shading—the haptic equivalent of
Phong shading [21] in graphics—within the virtual proxy
framework. Section 5 discusses methods to simulate static and
dynamic friction, and other surface and atmospheric effects. An
overview of the current implemented system is presented in
Section 6, and the low-level haptic controller is presented in
Section 7. Sections 8 and 9 are devoted to the presentation of
results and the discussion of future work.

2 BACKGROUND AND RELATED WORK

In penalty methods, forces proportional to the amount of
penetration into a virtual volume are applied to the haptic
device. For simple geometries, like spheres and planes, the
direction and amount of penetration are easy to determine. The
simplicity of this approach has facilitated the study of many
interesting situations such as those involving dynamic objects
and surface effects. Massie and Salisbury extended this
technique by subdividing the internal volume and associating
each sub-volume with a surface toward which repulsion forces
are exerted [17]. This approach has also been used successfu lly
to allow haptic interactions with volumetric data [1,12].

These approaches, however, have a number of drawbacks.
When multiple primitives touch or are allowed to intersect it is
often difficult to determine which exterior surface should be
associated with a given internal volume. In the worst case, a
global search of all the primitives may be required to find the

nearest exterior surface, as seen in Figure 2(a). In addition, as
a finger probe penetrates a surface it will eventually become
closer to another surface of the object. The resultant force
actively pushes the probe out through this second surface. This
situation is illustrated in Figure 2(b). Finally, as shown in
Figure 2(c), small or thin objects may have insufficient
internal volume to generate the constraint forces required to
prevent the probe from passing through the obstacle. This
problem is particularly troublesome in graphics applications
since most graphic models are constructed almost exclusively
from infinitely thin polygons, lines and points.

(a)

 (b) (c)

Figure 2: Limitations of “Penalty” based Haptic Rendering
Methods. (a) Lack of locality: removal of primitive will create
new nearest surface, (b) Force Discontinuities: application of
force causes probe to be attracted toward other surfaces. (c)
“Pop-Thru” of thin objects.

Constraint-based methods were first proposed for haptic
applications by Zilles and Salisbury [27] to address the
limitations of penalty-based approaches. These methods
employ a god-object which, similar to the virtual proxy, is
constrained by the objects in the environment. This approach
has been used to model interactions between a point-size god-
object and complex polygonal models. The virtual proxy is an
extension of this idea. This paper presents how, in addition to
surface constraints—force shading [19], friction, surface
stiffness, and texture can be modeled by simply changing the
position of the virtual proxy. Also, because the virtual proxy
has a finite size, it does not slip through the tiny numerical
gaps found in most polygonal meshes and can therefore operate
without first having to reconstruct the topology of a surface as
is required in the original god-object approach [27].

3 UPDATING PROXY POSITION

For simplicity, we will represent the virtual proxy as a
massless sphere that moves among the objects in the
environment. Because of small numerical errors, polygons that
are intended to share a common edge often contain gaps. The
radius of the proxy should therefore be large enough to avoid

falling through the holes in the underlying model. In addition,
the user will often wish to make the proxy large enough so that
it is easily visible on a graphical display. We also assume that
all the obstacles in the environment can be divided into a
finite set of convex components.

During the update process, a goal configuration for the proxy is
found at each time step and the proxy attempts to move to this
configuration by direct linear motion. Initially, the goal
configuration is the location of the end-point of the haptic
device. This position, however, will change as the proxy
encounters obstacles in the environment.

The volume swept by the virtual proxy, as it moves during a
given time period, is checked to see if it penetrates any
primitive in the environment. Because the path of the proxy is
linear, this test involves determining whether a line-segment,
specified by the proxy and goal configurations, falls within one
radius of any object in the environment. Since many primitive
objects may exist in the environment, an efficient means of
determining which primitives intersect the proxy’s path is
required. Several fast, general purpose, algorithms have been
developed for this purpose [15,10]. In our current
implementation, we employ an algorithm originally developed
for path-planning applications [22] that builds a bounding-
sphere hierarchy for each object and is capable of quickly
finding the shortest distance between non-convex bodies.

If the proxy’s path does not collide with any obstacles, the
proxy is allowed to move directly towards the goal. If one or
more interfering primitives are found, the proxy’s position is
advanced until it makes contact with the first obstacle in its
path. To model this interaction efficiently, we consider the
configuration space of the proxy, where the configuration-
space obstacles (C-obstacles) [14], consist of all points within
one proxy radius of the original obstacles. Note that, in this
space, the position of the proxy is identified by a point while
all C-obstacles have continuously defined surfaces and non-
zero thickness. A unique constraint plane can then be found
where the line segment that represents the proxy’s path
intersects the C-obstacle. An example of configuration space,
C-obstacles, and proxy constraint planes is shown in Figure 3.

PHYSICAL POSITION PROXY POSITION

constraint plane

Actual Obstacle Configuration Space Obstacle

Figure 3: Configuration Space Obstacles & Constraint Planes

Introduction of the configuration space allows us to model the
proxy as a point and the obstacles as uniquely defined local
planar surfaces. The proxy is moved until it makes contact with
the closest constraint plane. Planes that fall below this new
position cannot affect the local motion of the proxy and may
therefore be pruned. If the proxy reaches the user’s position, no
further movement is required. Otherwise, a new sub-goal is
generated observing that each constraint plane limits the
directions of motion to the half-space above the plane. The

intersection of all such half-spaces defines a convex,
unbounded polyhedron. The desired solution is the point within
this convex region (the local free-space) that minimizes the
distance to the user’s position. Since this problem is
independent of coordinate translation, and since all the
constraint planes go through the current proxy position, the
problem can be written compactly as

minimize subject tox p

n x

n x

n x

T

T

m
T

−

≥

≥

≥

ˆ ,

ˆ ,

ˆ .

1

2

0

0

0

M

 (1)

where p is the vector from the current proxy position to the
user’s position, x is the new sub-goal, and n̂ i mi , 0≤ ≤ , are the
unit normals of the constraint planes.

This problem may be solved using a standard quadratic
programming package such as that introduced by Gill et. al [9].
In our case, however, there are many simplifications that make
possible a simpler and faster solution. In our implementation,
this problem is solved in two steps. The minimum set of active
constraint planes is found first; this set is then used to find a
new sub-goal position. If the desired solution lies on a face of
the convex free space, then the solution lies on only one of the
constraint planes. If the solution lies on an edge, then two
constraint planes are required. If the solution lies on a vertex
three planes are needed. Finally, if the user’s position lies in
the free space, then no constraint planes are required. This
convex free space region has a dual space consisting of the
points − ≤ ≤n̂ i mi , 0 (the outward normals of the planes
forming the free-space region) and the origin (plane at
infinity). The constraint planes that bound the solution can be
found by determining the closest face, edge, or vertex on the
convex hull of this region to a point p̂ , a unit vector with the
same direction as p. This problem may be treated using the
same algorithms employed in the collision detection process
[8]. The vertices of the closest face, edge or vertex indicate
that the corresponding constraint planes bound the solution. An
example of this mapping is shown in Figure 4. As illustrated,
the solution x is constrained by planes a,b and the plane at
infinity o. In the dual, this corresponds to p̂ being nearest the
face {a,b,o}.

e

a

b

c

d

b

d
e

a

cp

o

o

p̂x

Figure 4: Constraint Planes and Equivalent Free Space Dual

Once the bounding planes have been determined, Equation 1
may be solved using only the active planes as constraints.

With the inequalities replaced by equalities, the problem can
be solved easily using Lagrange multipliers as is described by
Zilles in [27] to find the new sub-goal. Since at most three
planes can be active at one time, the entire solution can be
found in O m() time, where m is the original number of
constraint planes. Once the new sub-goal is found, the iteration
may continue.

Each iteration reduces the distance between the proxy and the
user’s position, thus ensuring that the movement of the proxy
will be stable if the input from the user is stable.

4 FORCE SHADING

Most graphic interfaces permit the specification of surface
normals on the vertices of polygonal surfaces. This information
is used to alter the lighting model on the surface to give it the
appearance of being smooth [11,21]. Morgenbesser and
Srinivasan [19] were the first to demonstrate that a similar
haptic effect may be created. Their solution changes the
direction of the normal force while retaining the magnitude
caused by the penetration of the original polygonal surface.
While this technique produces compelling shading effects, it is
unclear how to extend this approach to deal with multiple
intersecting shaded surfaces or additional surface effects, such
as friction or texture.

Our force shading approach handles situations involving
multiple intersecting, shaded surfaces that are in contact with
the proxy at the same time. These situations arise, for
example, when two force-shaded cylinders are placed side by
side. In addition, the shading effect is created solely by moving
the position of the proxy, thus helping to guarantee solution
stability.

interpolated normal

finger position

proxy position

sub-goal
force shading plane

constraint plane

surface normal

interpolated normal

finger position

proxy position
proxy goal

sub-goal
force shading plane

constraint plane

surface normal

pass 1

pass 2

Figure 5: Two Pass Force Shading with Supplied Normals

When a polygonal surface with user specified normals is
encountered a new local surface normal is calculated by
interpolating the normals from the vertices of the polygon.
Since the required interpolation weights have already been
computed as part of the collision detection process, this
determination requires little additional computation. This
interpolation is very similar to that required for Phong shading
in computer graphics applications [21]. The interpolated
normal specifies a new constraint plane going through the
contact point. The algorithm proceeds by first finding a new
sub-goal using the interpolated planes instead of the original
constraint planes. This sub-goal is then treated as the user’s
finger position and a second pass of the update procedure is
performed to obtain the final sub-goal configuration for this
iteration. This second pass is performed using the actual (non-
interpolated) constraint planes. While this approach is slightly
more computationally expensive than previous efforts [19,23],
it properly considers the effec t of all constraint surfaces in both
passes and produces the correct result even if multiple force
shaded surfaces exist. This process is illustrated in Figure 5.

If the sub-goal configuration is above all the true constraint
planes after the first pass, the sub-goal is first projected back
onto the nearest true constraint plane. This ensures that the
new sub-goal point will always be on the object surface and
that surface effects like friction and texture will be handled
correctly.

Note that force shading may increase the distance between the
user’s finger position and the position of the proxy. This
increase implies that the surface is active and can add energy
to the haptic/user system. In graphic models the interpolated
and the true surface normals typically differ by less then 30°. In
this case, the added energy is very small, and is not noticed by
the user. In all of our tests the motion was stable.

The difference between the force shaded surface and a flat
surface is illustrated in Figure 6. In both figures the difference
between the actual user position and the position of the virtual
proxy are shown as the user’s finger follows a circular path
around a ten-sided polygonal approximation of a circular
object.

Figure 6: Effect of Flat (a) vs. Force Shaded (b) surface on
proxy motion

As seen in Figure 6(a), a strong discontinuity occurs when the
proxy finally reaches an obstacle edge. In Figure 6(b), surface
normals have been specified on the vertices. The resulting
movement of the proxy shows that the resultant force is always
perpendicular to the interpolated circular object. This is what
would be expected if the user were moving around a perfectly
circular object. Although the proxy remains on the polygonal
surface the motion of the proxy is continuous and therefore the
resultant force feels smooth to the user.

5 SURFACE PROPERTIES

Several researchers [2,5,16,24,25] have proposed methods to
simulate static, dynamic, viscous friction and texture. Unlike
previous methods, our implementation creates all these effects
solely by restricting the movement of the proxy. In this way the
stability of the final solution can be better controlled.

5.1 Static Friction
Static friction (stiction) is particularly simple to model within
the virtual proxy framework. The force exerted on the proxy by
the user can be estimated by the equation f k p vp= −() , where

p is the position of the proxy, v is the position of the finger and
kp is the proportional gain of the haptic controller. For a given

constraint plane, let fn and ft be the components of the force
on the proxy normal and tangential to the constraint plane,
respectively. If the given constraint surface has a static friction
parameter µs , then the proxy is in static contact if

f ft s n≤ µ , i.e., the user’s position is in the friction cone of

the surface. When any constraint surface is in static contact
with the proxy, the proxy’s position is prevented from changing
by making the new sub-goal position equal to the current proxy
position.

5.2 Viscous and Dynamic Friction
Our approach for modeling viscous damping and Coulomb
friction is based on the observation of the motion of a one
dimensional object. The equation of motion of an object with
mass m moving in a viscous field, along a surface that exhibits
dynamic friction is

f f mx bxt d n− = +µ ˙̇ ˙, (2)

where b is a viscous damping term, and µd is the coefficient
of Coulomb friction. As the mass of the object approaches
zero, the body quickly reaches its saturation velocity. In
dynamic equilibrium, the velocity of the object is given by

˙ .x
f f

b
t d n= − µ

 (3)

This limit can be used to bound the amount that the proxy can
travel in one clock cycle. When multiple constraint surfaces
exist, the lowest velocity bound is taken as the limit of the
proxy’s movement. In the event that the maximum velocity is
negative, then the dynamic friction term is sufficient to resist
all movement and the proxy’s position is not changed. If b = 0
no viscous term exists and the maximum velocity is not
limited. Note that this method does not require computation of
the finger velocity and is therefore not susceptible to errors
caused from trying to estimate this value from a finite number
of encoder values.

In the majority of current treatments, the stiffness of a surface
is modeled by reducing the position gain of the haptic
controller. This approach is undesirable in our system since the
location of the proxy models many complex and intermixed
phenomena. In addition, it is desirable to keep the haptic
controller at settings that are chosen to optimize its
performance based solely on the inertia, friction and stiffness
of the mechanical system and not on the needs of the virtual
environment.

Given a surface with stiffness s s, 0 1≤ ≤ , it is possible to
change the apparent stiffness of a surface without altering any
of the controller’s parameters by choosing a new point ′p such
that

′ = + −p v s p v(), (4)

where p is the position of the proxy assuming an infinitely stiff
surface and v is the position of the user’s finger. The point ′p
is used as the proxy position for the haptic control loop. The
old proxy position is still retained to allow the proxy to
continue to follow the surface of the object. This approach is
based on the intuitive physical observation that, as pressure is
applied, the surface of a soft body will indent, resulting in the
finger penetrating the volume of the un-deformed object, as
seen in Figure 7. Caution should be taken when adjacent
surfaces have different stiffnesses. As the proxy moves from a
non-rigid surface to one with a higher stiffness, the distance
between the proxy and the finger will increase, adding energy
to the system. The result is that the user feels what appears to
be an active unnatural surface. A more realistic effect can be
created by altering the polygonal surface as it is affected by
forces applied by the user. The surface can be deformed to
reveal properties of the model’s internal structure that are not
possible to create solely by altering the stiffness of the
boundary surface.

PHYSICAL POSITION PROXY POSITION

STIFF SOFT

Figure 7: Physical Intuition Behind Stiffness Model

5.3 Texture
Haptic textures were first demonstrated by Minsky et al. [18]
for the haptic display of height fields on a two degree of
freedom planar haptic display. In our system, an image-based
texture map can be used to modulate any of the surface
parameters—friction, viscosity or stiffness—to create different
haptic effects. At present, the texture values are only evaluated
at the proxy position at the beginning of each clock cycle. This
produces a convincing effect with slowly changing textures.
Ideally, the texture values should be evaluated as the proxy
moves along the surface of the object to ensure that a
significant event is not missed as the proxy travels along that
surface. This evaluation is required, for example, when
layering a texture of thin high friction grid lines on a planar
surface. Without evaluating the texture values along the path
these grid-lines may be missed.

Another interesting approach to the modeling of textures is
based on the modification of the force-shading constraint
planes in a manner similar to that employed in bump mapping
in computer graphics [4]. Our current texture bump-map
technique can generate one additional constraint plane for
each textured surface. This approach is adequate to model

continuously differentiable textured surfaces. Grooved or
cratered surfaces which contain sharp edges and corners may
require additional constraint planes and the monitoring of the
motion of the proxy to ensure that it is not constrained by other
surface features as it moves along the surface.

6 SYSTEM IMPLEMENTATION

Our current system runs on two computers: the haptic server
and the application client. The separation of the haptic and
application/graphic processes was first proposed by Adachi et
al. [2]. Decoupling the low-level force servo loop from the high-
level control is important since the haptic servo loop must run
at a very high rate, typically greater than 1000Hz, to achieve a
high fidelity force display. Most application programs typically
run at a much slower rate (~30Hz).

In our system the bulk of haptic rendering effort is placed on
the haptic server, thus freeing the client machine to perform
the tasks required by the user’s application. The haptic server
receives high level commands from the client, tracks the
position of the haptic device, updates the position of the virtual
proxy, and sends control commands to the haptic device. This
arrangement places the performance bottle-neck on the haptic
server CPU rather than on the I/O channel. This is desirable
since CPU processor performance is increasing rapidly while
the latency of I/O connections has been largely stagnant. In our
current system, a SGI workstation is used as the haptic client,
a Pentium Pro PC is used as the server, and communication
between them is performed over a regular ethernet connection
via TCP/IP packets.

6.1 The Client Application

Applications communicate to the haptic server through the HL
network interface library. The current library supports a limited
set of the functions provided by the GL graphics library. The
HL Library allows users to define objects as a collection of
primitive objects — points, line segments or polygons. Objects
are retained until over-written. Transformations are provided to
allow objects and primitives to be freely translated or rotated.
Surface normals and texture coordinates can be associated
with polygonal vertices to allow for the specification of smooth
or textured surfaces. Object hierarchies and material properties
such as friction and stiffness may also be defined.

6.2 Model Construction

Once the modeling commands are received from the client,
they must be stored in a form suitable for haptic rendering.
Vertices are transformed into local object frames and meshes
and sequences of line segments are represented as a set of
independent convex bodies.

Because each object is normally constructed from a large
number of primitives, a naive test based on checking if each
primitive is in the path of the proxy would be prohibitively
expensive. In general, the proxy’s path will be in contact with
at most a small fraction of the underlying primitives. In our
approach a hierarchical bounding representation for the object
is constructed to take advantage of the spatial coherence
inherent in the object. The bounding representation, based on
spheres, is similar to that first proposed by Quinlan [22].

This hierarchy of bounding spheres is constructed by first
covering each polygon with small spheres in a manner similar

to scan conversion in computer graphics. These spheres are the
leaves of an approximately balanced binary tree. Each node of
this tree represents a single sphere that completely contains all
the leaves of its descendants. After covering the object, a
divide and conquer strategy is used to build the interior nodes
of the tree. This algorithm works in a manner similar to quick-
sort. First an axis aligned bounding box that contains all the
leaf spheres is found. The leaf spheres are then divided along
the plane through the mid-point of the longest axes of the
bounding box. Each of the resulting two subsets should be
compact and contain approximately an equal number of leaf
spheres. The bounding tree is constructed by recursively
invoking the algorithm on each subset and then creating a new
node with the two sub-trees as children. A cut-away view
showing the leaf nodes (yellow) and bounding sphere hierarchy
for a typical model is illustrated in Figure 8. Note that a node
is not required to fully contain all the descendant internal
nodes, only the descendant leaf nodes.

Figure 8: Cut-Away of the Bounding Hierarchy of a Cat Model

Two heuristics are used to compute the bounding sphere of a
given node. The first heuristic finds the smallest bounding
sphere that contains the spheres of its two children. The second
method directly examines the leaf spheres. The center is taken
as the mid-point of the bounding box already computed earlier.
The radius is taken to be just large enough to contain all the
descendant leaf nodes. The method that generates the sphere
with the smallest radius is used for the given node. The first
heuristic tends to work better near the leaves of the tree, while
the second method produces better results closer to the root.
This algorithm has an expected O n n(lg) execution time,
where n is the number of leaf spheres.

7 HAPTIC CONTROLLER

Reliance on a virtual proxy reduces the task of the haptic
servo controller to minimization of the error between the
configuration of the proxy and position of the haptic device.
Reducing position error of a mechanical system is a problem
which has been discussed extensively in the robotics literature
[6]. In our current implementation we rely on a simple
operational space proportional derivative (PD) controller [13].
As all modeling effects are achieved by the movement of the
proxy, controller gains and other parameters can be set by sole
consideration of the properties of the mechanical system.

The low-level control loop may be separated from the
contact/proxy update loop to guarantee stability of the system
even in the presence of a large number of objects. By running
the control loop at a high fixed clock rate, stability is easier to
ensure and the fidelity of the haptic display degrades
gracefully as the complexity of the environment is increased. If
the proxy update procedure is unable to maintain the same rate
as the controller, objects feel “sticky.” While this effect may
not be desirable, it is preferable to permitting unstable and
dangerous behavior of the haptic device.

8 RESULTS

Our haptic library has been successfully tested on a large
number of polygonal models, including some containing more
than 24,000 polygonal primitives. In our tests the client
computer was a SGI Indigo2 High Impact running IRIX 6.2 and
the haptic server was a 200Mhz Pentium Pro running Linux
2.0.2. Communication between computers was made through a
standard ethernet TCP/IP connection. The haptic device
employed was a ground based PHANToM manipulator. This 3-
degree-of-freedom force-feedback device has sufficiently high
stiffness, low inertia and low friction for high fidelity force
display. The server produced stable results with position gains
over 1800 Newtons/meter with no artificial damping. The
proxy update loop computation time is approximately O n(lg)
where n is the number of polygons. This slow asymptotic
growth is the consequence of the dependence of the proxy’s
movement on only its local environment. In contrast, the
rendering time for a graphic display, where the entire world
may be visible at one time, is inherently O n() .

The current system is adept in modeling a large number of
geometric models. Some examples are shown in Figures 9,10
and 11. Figure 9 shows a VRML model of an AT-AT from Star
Wars containing over 11,000 polygons. The high level interface
simplifies the implementation of applications like VRML
browsers. Figure 10 shows a VRML model of the classic
teapot, composed of 3416 triangular surfaces. Force shading is
used to model the apparently curved surfaces of the underlying
polygonal model. Figure 11 shows a sample test application
where the user can click virtual buttons to select a variety of
geometrical models with numerous different surface
characteristics. These models can be moved to make them
contact or overlap one another, creating possibly thousands of
unexpected new intersections, edges, and corners.

In all cases, the location of the virtual proxy, rather than finger
position, is displayed to the user, further adding to the sense of
rigidity of the modeled environment [26].

Figure 9: Haptic AT-AT (11088 polygons)

Figure 10: Force Shaded Teapot (3416 polygons)

Figure 11: Interactive Haptic Environment

9 FUTURE WORK

While the current system is able to model a wide variety of
objects and material properties, it only supports limited
manipulation of the objects in the environment. As is the case
with graphic systems, movement is simulated by re-rendering
the moving objects at different locations. These discrete
motion steps, which must be specified by the client processor,
result in a discontinuous jerky motion. Furthermore, in some
cases, it is possible for the proxy to lie outside of an object at
one time step and within it the next. We are currently looking
at several ways of allowing the application program to easily
endow haptic objects with smooth, continuous and dynamic
motions.

Finally, the virtual proxy framework can be expanded to
handle implicit surfaces like splines, or even volumetric
information directly without first transforming these
representations into a polygonal surface model. This ability is
beneficial because often the cost of this transformation can be
prohibitively expensive, or can greatly reduce the interactivity
of the application.

CONCLUSION

The system presented in this paper is capable of the haptic
simulation of complex graphical environments. The common
virtual proxy framework, used for modeling all haptic effects,
reduces the low-level control of the haptic device to a simple
positional controller. This controller may operate in real time if
its operation is separated from the rest of the haptic rendering
process, thus helping to ensure that the haptic controller’s
stability. The high level user interface allows graphic
applications to quickly and easily incorporate haptic
technology and increases the ability to manipulate and interact
with virtual environments.

ACKNOWLEDGMENTS

We wish to thank Oliver Brock, Kyong-Sok Chang, Eugene
Jhong, Karon MacLean, Robert Shaw and Bill Verplank for
their helpful insights and discussion in preparing this paper.
The AT-AT by H.H.C. is from Avalon Viewpoint archive. The
reseach was supported by research grants from NASA/JSC,
grant NGT-9-6, Boeing, Interval Research Corporation, and
NSF, grant IRI-9320017.

REFERENCES

[1] Avila, R. S., Sobierajski, “A Haptic Interaction Method for
Volume Visualization,” Visualization ‘96 Proceedings, October
1996.

[2] Adachi, Y., Kumano, T., Ogino K., “Intermediate Representation
for Stiff Virtual Objects.” Proc. IEEE Virtual Reality Annual Intl.
Symposium '95, (March 11-15), pp. 203-210.

[3] Baraff, D., “Analytical Methods for Dynamic Simulation of Non-
penetrating Rigid Bodies,” SIGGRAPH 89 Proceedings, (August
1989), pp. 223-232.

[4] Blinn, J., “Simulation of Wrinkled Surfaces,” SIGGRAPH 78
Proceedings, (August 1978), pp. 286-292.

[5] Buttolo, P., Kung, D., Hannaford, B., “Manipulation in Real,
Virtual and Remote Environments.” Proc. IEEE Conference on
Systems, Man and Cybernetics (August 1990), pp. 177-185.

[6] Craig, J., “Introduction to Robotics Mechanics and Control,”
Addison-Wesley Pub. Co., 1989.

[7] Finch, M., Chi, V., Taylor, R. M. II, Falvo, M., Washburn, S.,
Superfine, R., “Surface Modification Tools in a Virtual
Environment Interface to a Scanning Probe Microscope,” Proc.
1995 Symposium on Interactive 3D Graphics , pp13-18, April 1995.

[8] Gilbert, E. G., Johnson, D.W., Keerthi, S. S., “A Fast Procedure
for Computing the Distance Between Complex Objects in Three-
Dimensional Space,” IEEE J. of Robotics and Automation , Vol.4,
No. 2, April 1988.

[9] Gill, P., Hammarling, S., Murray, W., Saunders, M., Wright, M.,
“User's Guide to LLSOL,” Stanford University Technical Report
SOL 86-1, (January 1986).

[10] Gottschalk, S., Lin, M. C., Manocha D., “OBBTree: A
Hierarchical Structure for Rapid Interference Detection,”
SIGGRAPH 96 Proceedings, (August 1996), pp. 171-180.

[11] Gouraud, H. “Continuous Shading of Curved Surfaces.” IEEE
Transactions on Computers, C-20(6):pp 623-629, June 1971.

[12] Iwata H., Noma, H., “Volume Haptization ,” IEEE 1993
Symposium on Research Frontiers in Virtual Reality , pp. 16-23,
October 1993.

[13] Khatib, O., “A Unified Approach to Motion and Force Control of
Robot Manipulators: The Operational Space Formulation,” IEEE
J. of Robotics and Automation, Vol 3., No 1., 1987.

[14] Latombe, Jean-Claude, “Robot Motion Planning,” Kluwer
Academic Publishing, 1991, pp 58-152.

[15] Lin, M., Canny, J. F., “A Fast Algorithm for Incremental
Distance Calculation,” International Conference on Robotics and
Automation , pp. 1008-1014, May 1991.

[16] Mark, W. R., Randolph,S. C., Finch M., Van Verth,J. M., Taylor
II,R. M., “Adding Force Feedback to Graphics Systems: Issues
and Solutions,” SIGGRAPH '96 Proceedings , (August 1996), pp.
447-452.

[17] Massie, T.M., Salisbury, J.K., “The PHANToM Haptic Interface:
A Device for Probing Virtual Objects.” ASME Haptic Interfaces
for Virtual Environment and Teleoperator Systems 1994, In
Dynamic Systems and Control 1994 (Chicago, Nov. 6-11), vol. 1,
pp.295-301.

[18] Minsky, M. D. R., “Computational Haptics: The Sandpaper
System for Synthesizing Texture for a Force-Feedback Display.”
PhD thesis, MIT, June 1995.

[19] Morgenbesser, H. B., “Force Shading for Haptic Shape
Perception in Haptic Virtual Environments.” M.Eng. thesis, MIT,
September 1995.

[20] Ouh-Young, M., “Fo rce Display in Molecular Docking ,” Ph. D.
Dissertation, University of North Carolina at Chapel Hill, UNC-
CH CS TR90-004, February, 1990.

[21] Phong, B. T., “Illumination for Computer Generated Pictures.”
Communications of the ACM, 18(6), pp311-317, June 1975.

[22] Quinlan, S., “Efficient Distance Computation between Non-
Convex Objects,” Int. Conference on Robotics and Automation,
(April 1994).

[23] Ruspini, D., Kolarov, K., “Robust Haptic Display of Graphical
Environments,” Proc. of The First Phantom User’s Group
Workshop, September 1996

[24] Salcudean, S. E., Vlaar, T. D., “On the Emulation of Stiff Walls
and Static Friction with a Magnetically Levitated Input/Output
Device,” ASME Haptic Interfaces for Virtual Environment and
Teleoperator Systems, Dynamics Systems and Control, pp.123-
130, April 1995.

[25] Salisbury, K., Brock, D., Massie, T., Swarup, N., Zilles, C.,
“Haptic Rendering: Programming Touch Interaction with Virtual
Objects,” Proc. 1995 Symposium on Interactive 3D Graphics, pp.
123-130, April 1995.

[26] Srinivasan, M. A., Beauregard, G. L., Brock, D. L., “The Impact
of Visual Information of the Haptic Peception of Stiffness in
Virtual Environments,” ASME Winter Annual Meeting,
November 1996.

[27] Zilles, C. B., Salisbury, J. K., “A Constraint-based God-object
Method for Haptic Display.” ASME Haptic Interfaces for Virtual
Environment and Teleoperator Systems 1994, Dynamic Systems
and Control 1994 (Chicago, Illinois, Nov. 6-11), vol. 1, pp.146-
150.

