Chainpoint

A scalable protocol for anchoring data in the blockchain and
generating blockchain receipts

Authors: Wayne Vaughan, Jason Bukowski, Shawn Wilkinson

Contributors: Manu Sporny, Ryan Shea,
Christopher Allen, Paul Storcz, Jude Nelson

June 29, 2016
v2.0

Abstract
A standard for maximizing the scalability of anchoring data in the blockchain
and generating blockchain receipts. Each receipt contains the information
needed to verify the data without relying on a trusted third party. The original
Chainpoint 1.0 specification has been updated based on a year of learning.

Introduction

The use of the Bitcoin blockchain [1] to timestamp and verify data in an immutable public
ledger was pioneered by Manuel Araoz with the creation of Proof of Existence [2]. This
system, and others like it, notarize data in the blockchain by publishing a hash of the data in
a Bitcoin transaction. By comparing the hash published in the blockchain with the hash of
some data, it's possible to verify that the data existed at a specific time. At the time of
writing, Bitcoin can handle approximately five transactions per second and each transaction
costs approximately $0.10 USD [3]. These limitations make it impractical and cost
prohibitive to anchor large volumes of data in the Bitcoin blockchain. What is needed is a
scalable method to anchor data in the blockchain and a standard protocol that allows
systems to read and verify the data.

Anchoring Data

To anchor data in the blockchain, we start by using a standard hashing function such as
SHA-256 to generate a unique hash of the target data. Multiple hashes are assembled into
a block, which is simply a list of hashes. Periodically, these blocks are used to generate a
Merkle Tree [4], and the Merkle Root is published in the blockchain via a transaction. By
collating multiple hashes into a Merkle Tree and publishing the Merkle Root, we can anchor
large volumes of data in the blockchain using a single transaction.

@ @ Hashes

Target

Merkle Tree

Hash
I Merkle Root

Block

Creating Blockchain Receipts

In the real world, a receipt provides proof of a transaction. A blockchain receipt provides
proof that some data existed at a specific time. It contains all the information needed to
prove an individual hash was part of the Merkle Tree whose root was published in a
transaction in the Blockchain. By tracing a path from the Merkle root to the target hash, we
can generate a Merkle Proof that proves any one of the elements is in the Merkle tree,
without having to know the entire tree. These elements can be used to create a blockchain
receipt that contains, at minimum, the Target Hash, Merkle Proof, Merkle Root, and
Transaction ID.

Target Hash

Merkle Tree O O
O O Blockchain

@ Merkle Root Receipt

Blockchain I

Transaction ID

Blockchain Receipt Standard:

Chainpoint 2.0 receipts are JSON-LD compliant. A full description of all Chainpoint
versions is available at http://chainpoint.org

@context The JSON-LD Context of the document

type The type of Chainpoint Receipt being described

targetHash The hash value being anchored in hex string format
merkleRoot The merkle root of the tree in hex string format

proof An array of hash objects connecting targetHash to merkleRoot
anchors An array of methods employed to anchor data to blockchain(s)

The anchors array contains one or more anchor objects.

type The type of anchoring being performed

sourceld The Id used to locate the anchored valued for the given source

JSON-LD example of a Chainpoint 2.0 receipt:

"@context": "https://w3id.org/chainpoint/v2",
"type": "ChainpointSHA256v2",
"targetHash": "bdf8c9bdf076d6aff0292a1c9448691d2ae283f2ce41b045355e2c8ch8e85ef2",
"merkleRoot": "51296468ea48ddbcc546abb85b935¢73058fd8acdbOb953dabaa1ae966581a7a",
"proof": [
{
"left": "bdf8c9bdf076d6aff0292a1c9448691d2ae283f2ce41b045355e2c8cb8e85ef2"
b
{
"left": "cbOdbbedb5ec5363e39be9fc43f56f321e1572cfcf304d26fc67cbbea2e4 faf"
2
{
"right": "cb0Odbbedb5ec5363e39be9fc43f56f321e1572cfcf304d26fc67cb6ea2e49faf"
}
1,
"anchors": [
{
"type": "BTCOpReturn",
"sourceld": "f3be82fe1b5d8f18e009cb9a491781289d2e01678311fe2b2e4e84381aafadee”
}
]
}

http://chainpoint.org/

Receipt Types:
Chainpoint 2.0 supports the following Secure Hashing Algorithm types.

ChainpointSHA224v2 Chainpoint 2.0 receipt using SHA-224
ChainpointSHA256v2 Chainpoint 2.0 receipt using SHA-256
ChainpointSHA384v2 Chainpoint 2.0 receipt using SHA-384
ChainpointSHA512v2 Chainpoint 2.0 receipt using SHA-512
ChainpointSHA3-224v2 Chainpoint 2.0 receipt using SHA3-224
ChainpointSHA3-256v2 Chainpoint 2.0 receipt using SHA3-256
ChainpointSHA3-384v2 Chainpoint 2.0 receipt using SHA3-384
ChainpointSHA3-512v2 Chainpoint 2.0 receipt using SHA3-512
Anchor Types:

Chainpoint 2.0 supports the following anchor types. Additional anchor types are under
development.

BTCOpReturn Anchored to Bitcoin transaction using OP_RETURN

Merkle Tree Construction

When constructing merkle trees from which proofs will be generated for Chainpoint
receipts, lonely leaf (odd) end nodes on any given level should be promoted up to the next
level, as depicted in the following diagram:

ROOT = Hash (H+E)
H = Hash (F+G) E
F=Hash (A+B) G =Hash (C+D) E

A B C D E

Chainpoint requires that hashes used in building merkle trees and proofs be handled internally in
binary form only. When concatenating hashes and hashing those results, do not use the hex
strings. The hex string representation of hashes is only used for displaying the hash values within
the receipt.

Verifying Blockchain Receipts

1. Concatenate targetHash and the first hash in the proof array. The right or left designation
specifies which side of the concatenation that the proof hash value should be on.

2. Hash the resulting value.

3. Concatenate the resulting hash with the next hash in the proof array, using the same left and
right rules.

4. Hash that value and continue the process until you've gone through each item in the proof
array.

5. The final hash value should equal the merkleRoot value

6. Ensure that the merkleRoot value is stored in the transaction specified in the anchors array. In
the case of type ‘BTCOpReturn’, ensure that the BTC transaction with the id of sourceld has the
merkleRoot stored in the OP_RETURN field

Storing Blockchain Receipts

Chainpoint receipts can be stored in a centralized database or a decentralized
system such as Storj or IPFS.

Anchoring In Multiple Locations

The Chainpoint protocol can support multiple blockchains. The Merkle root for a
blockchain receipt could be stored in Ethereum, Factom, or any other immutable
and globally persistent data store.

Conclusion

We have outlined a scalable protocol for anchoring data in the blockchain and
generating blockchain receipts. A description of the Chainpoint protocol is
available at http://github.com/chainpoint.

References

[1]1 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, (2009).
https://bitcoin.org/bitcoin.pdf.

[2] M. Araoz. What is Proof of existence?, (2014).
http://www.proofofexistence.com/about.

[3] “Transaction Fees.” Bitcoin Wiki, (2016).
https://en.bitcoin.it/wiki/Transaction fees

4] R.C. Merkle. Protocols for public key cryptosystems, (April 1980). lIn Proc.
1980 Symposium on Security and Privacy, IEEE Computer Society, pages
122-133.

http://github.com/chainpoint
http://www.proofofexistence.com/about
https://en.bitcoin.it/wiki/Transaction_fees

