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• One of the fundamental goals in the field of synthetic biology is to 
reliably engineer biological systems to respond to environmental 
conditions according to a pre-determined genetic program.

• Using Boolean logic functions, synthetic biologists have successfully 
engineered living cells to perform certain functions1.

• However, it has been difficult to realize the full potential of 
genetically encoded logic in practical applications without the ability 
to specify timing and performance of genetic circuits.

1A. A. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov, E. A. Strychalski, D. Ross, D. 
Densmore, and C. A. Voigt, “Genetic circuit design automation,” Science.

Introduction



• To remedy this issue, we propose using performance specifications.

• For example, we can give a performance specification for a traffic 
light:
• A traffic light should remain green until a pedestrian requests a walk signal.  

Within 5 seconds of receiving the request, the traffic light should change to 
yellow for 2 seconds, and then change to red for 30 seconds before switching 
back to green.

Performance Specifications
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Performance Specifications

• Temporal logic can be used to write performance specifications as it 
allows for reasoning about behavior over time.

• In particular, we use Signal Temporal Logic (STL) as it allows for the 
specification of requirements on signals at specific times leading to a 
level of expressiveness necessary for genetic circuit design.

[G [0,200) (aTc > 30 ∧ TetR > 30)] ∧

[F [0,200) G [0,200) (TetR ≤ 30)] ∧

[G [400,600) (IPTG > 30)] ∧

[F [400,800) (TetR > 30)]



Temporal Logic Syntax

• Logical Operators:
• Conjunction: φ ∧ ψ 
• Disjunction: φ ∨ ψ
• Implication: φ → ψ
•Negation: ¬φ

•Temporal Operators:
• Until: φ U ψ
• Future (Eventually): F φ (or ◊φ)
• Globally: G φ (or □φ)



Until Operator

p U q

• q holds at the current or a future position, and p has to hold until 
that position. At that position p does not have to hold any more. 



Until Operator

p p q q

p U q

• q holds at the current or a future position, and p has to hold until 
that position. At that position p does not have to hold any more. 



Until Operator

p p q q

p U q

• q holds at the current or a future position, and p has to hold until 
that position. At that position p does not have to hold any more. 



Future (Eventually) Operator

F p

• Future: p eventually has to hold (somewhere on the subsequent 
path).



Future (Eventually) Operator
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Future (Eventually) Operator
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Globally Operator

G p

• Globally: p has to hold on the entire subsequent path.



Globally Operator

p p p p
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• Globally: p has to hold on the entire subsequent path.



Globally Operator
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• Globally: p has to hold on the entire subsequent path.



Repressor Incoherent FeedForward Loop (RIFFL)



Potential Behaviors

• Depending on which repressor modules are used, different behaviors 
can be achieved.



• These behaviors must be encoded in STL.

• For instance, when “In” is greater than 100, “Out” always eventually 
rises above 50 within 1000 time units.

• Also, when “In” is 0, “Out” always remains below 50.

• This corresponds to the following STL:
[G [0,10000) (In > 100)] → [G [0,10000) F [0,1000) (Out > 50)] ∧
[G [0,10000) (In ≤ 0)] → [G [0,10000) (Out ≤ 50)]

Signal Temporal Logic (STL)



Characterization – Temporal Logic Inference (TLI)

=Φ

• Using supervised learning, TLI2 can be used to “learn” an STL formula 
from time series data.

• The current implementation of TLI works by finding optimal STL 
primitives and parameters:
• 𝐺 𝑡0,𝑡1 𝑥𝑖 < 𝑘,    𝐹 𝑡0,𝑡1 𝑥𝑖 > 𝑘,

• 𝐺 𝑡0,𝑡1 𝑥𝑖 > 𝑘,    𝐹 𝑡0,𝑡1 𝑥𝑖 < 𝑘,    …

• 𝑡0, 𝑡1, 𝑘 found by simulated annealing

2G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A Decision Tree Approach to 
Data Classification using Signal Temporal Logic,” presented at the Proceedings of the 19th 
International Conference on Hybrid systems: Computation and Control, New York, NY, USA, 
2016, pp. 1–10.



• DNA segments representing genetic parts and modules can be 
composed to create genetic circuits.

Composability in Synthetic Biology

DNA 
Components

Genetic
Modules

Genetic
Circuit



• STL with added functionality:
• Concatenation (•) – allows one STL formula to connect to another in 

sequence.

• Inputs – signals that are annotated as drivers of the formula.

• Outputs – signals that are annotated as being produced by the formula.

• Mapping – a collection of assignments among the inputs and outputs of STL 
formulae.

• For instance, 𝜙 is composed of 𝜙1 and 𝜙2:

𝜙1 𝜙2
𝑖1

𝑜1

𝑜2

𝑖1

𝑖2

𝑜1

𝑜2

𝑜3

STL♭
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• Concatenation – 𝜙(𝑥1, 𝑦1, 𝑦2, 𝑦3) = 𝜙1(𝑖1, 𝑜1, 𝑜2) • 𝜙2(𝑖1, 𝑖2, 𝑜1, 𝑜2, 𝑜3).
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• Concatenation (•) – allows one STL formula to connect to another in 
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• Inputs – signals that are annotated as drivers of the formula.

• Outputs – signals that are annotated as being produced by the formula.

• Mapping – a collection of assignments among the inputs and outputs of STL 
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• For instance, 𝜙 is composed of 𝜙1 and 𝜙2:
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• Concatenation – 𝜙(𝑥1, 𝑦1, 𝑦2, 𝑦3) = 𝜙1(𝑖1, 𝑜1, 𝑜2) • 𝜙2(𝑖1, 𝑖2, 𝑜1, 𝑜2, 𝑜3).

• Input mapping – (𝜙: 𝑥1= 𝜙1: 𝑖1).
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• Concatenation – 𝜙(𝑥1, 𝑦1, 𝑦2, 𝑦3) = 𝜙1(𝑖1, 𝑜1, 𝑜2) • 𝜙2(𝑖1, 𝑖2, 𝑜1, 𝑜2, 𝑜3).

• Input mapping – (𝜙: 𝑥1= 𝜙1: 𝑖1).

• Output mapping – (𝜙: 𝑦1=𝜙2: 𝑜1) Λ (𝜙: 𝑦2= 𝜙2: 𝑜2) Λ (𝜙: 𝑦3= 𝜙2: 𝑜3).
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• Concatenation (•) – allows one STL formula to connect to another in 
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• Concatenation – 𝜙(𝑥1, 𝑦1, 𝑦2, 𝑦3) = 𝜙1(𝑖1, 𝑜1, 𝑜2) • 𝜙2(𝑖1, 𝑖2, 𝑜1, 𝑜2, 𝑜3).

• Input mapping – (𝜙: 𝑥1= 𝜙1: 𝑖1).

• Output mapping – (𝜙: 𝑦1=𝜙2: 𝑜1) Λ (𝜙: 𝑦2= 𝜙2: 𝑜2) Λ (𝜙: 𝑦3= 𝜙2: 𝑜3).

• Internal mapping – (𝜙1: 𝑜1= 𝜙2: 𝑖1) Λ (𝜙1: 𝑜2= 𝜙2: 𝑖2).
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Note:  The mapping can be applied to other STL operators, not just concatenation.

• Concatenation – 𝜙(𝑥1, 𝑦1, 𝑦2, 𝑦3) = 𝜙1(𝑖1, 𝑜1, 𝑜2) • 𝜙2(𝑖1, 𝑖2, 𝑜1, 𝑜2, 𝑜3).

• Input mapping – (𝜙: 𝑥1= 𝜙1: 𝑖1).

• Output mapping – (𝜙: 𝑦1=𝜙2: 𝑜1) Λ (𝜙: 𝑦2= 𝜙2: 𝑜2) Λ (𝜙: 𝑦3= 𝜙2: 𝑜3).

• Internal mapping – (𝜙1: 𝑜1= 𝜙2: 𝑖1) Λ (𝜙1: 𝑜2= 𝜙2: 𝑖2).
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Possible RIFFL Circuit Designs



Future Work

•Currently, TLI requires both desirable and 
undesirable traces.
•We are working on a method that only requires 

desirable traces.

•We are adding constraints to help prune the 
potential design space of the composed genetic 
circuits.

•We are currently testing these methods on 
mammalian and bacterial synthetic biology 
examples.
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