
Utilizing Signal Temporal
Logic to Characterize and

Compose Modules in
Synthetic Biology

Curtis Madsen, Prashant Vaidyanathan, Cristian-Ioan
Vasile, Rachael Ivison, Junmin Wang, Calin Belta, and

Douglas Densmore

IWBDA – August 16, 2016

• One of the fundamental goals in the field of synthetic biology is to
reliably engineer biological systems to respond to environmental
conditions according to a pre-determined genetic program.

• Using Boolean logic functions, synthetic biologists have successfully
engineered living cells to perform certain functions1.

• However, it has been difficult to realize the full potential of
genetically encoded logic in practical applications without the ability
to specify timing and performance of genetic circuits.

1A. A. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov, E. A. Strychalski, D. Ross, D.
Densmore, and C. A. Voigt, “Genetic circuit design automation,” Science.

Introduction

• To remedy this issue, we propose using performance specifications.

• For example, we can give a performance specification for a traffic
light:
• A traffic light should remain green until a pedestrian requests a walk signal.

Within 5 seconds of receiving the request, the traffic light should change to
yellow for 2 seconds, and then change to red for 30 seconds before switching
back to green.

Performance Specifications

5

30

2

Performance Specifications

• Temporal logic can be used to write performance specifications as it
allows for reasoning about behavior over time.

• In particular, we use Signal Temporal Logic (STL) as it allows for the
specification of requirements on signals at specific times leading to a
level of expressiveness necessary for genetic circuit design.

[G [0,200) (aTc > 30 ∧ TetR > 30)] ∧

[F [0,200) G [0,200) (TetR ≤ 30)] ∧

[G [400,600) (IPTG > 30)] ∧

[F [400,800) (TetR > 30)]

Temporal Logic Syntax

• Logical Operators:
• Conjunction: φ ∧ ψ
• Disjunction: φ ∨ ψ
• Implication: φ → ψ
•Negation: ¬φ

•Temporal Operators:
• Until: φ U ψ
• Future (Eventually): F φ (or ◊φ)
• Globally: G φ (or □φ)

Until Operator

p U q

• q holds at the current or a future position, and p has to hold until
that position. At that position p does not have to hold any more.

Until Operator

p p q q

p U q

• q holds at the current or a future position, and p has to hold until
that position. At that position p does not have to hold any more.

Until Operator

p p q q

p U q

• q holds at the current or a future position, and p has to hold until
that position. At that position p does not have to hold any more.

Future (Eventually) Operator

F p

• Future: p eventually has to hold (somewhere on the subsequent
path).

Future (Eventually) Operator

p p

F p

• Future: p eventually has to hold (somewhere on the subsequent
path).

Future (Eventually) Operator

p p

F p

• Future: p eventually has to hold (somewhere on the subsequent
path).

Globally Operator

G p

• Globally: p has to hold on the entire subsequent path.

Globally Operator

p p p p

G p

• Globally: p has to hold on the entire subsequent path.

Globally Operator

p p p p

G p

• Globally: p has to hold on the entire subsequent path.

Repressor Incoherent FeedForward Loop (RIFFL)

Potential Behaviors

• Depending on which repressor modules are used, different behaviors
can be achieved.

• These behaviors must be encoded in STL.

• For instance, when “In” is greater than 100, “Out” always eventually
rises above 50 within 1000 time units.

• Also, when “In” is 0, “Out” always remains below 50.

• This corresponds to the following STL:
[G [0,10000) (In > 100)] → [G [0,10000) F [0,1000) (Out > 50)] ∧
[G [0,10000) (In ≤ 0)] → [G [0,10000) (Out ≤ 50)]

Signal Temporal Logic (STL)

Characterization – Temporal Logic Inference (TLI)

=Φ

• Using supervised learning, TLI2 can be used to “learn” an STL formula
from time series data.

• The current implementation of TLI works by finding optimal STL
primitives and parameters:
• 𝐺 𝑡0,𝑡1 𝑥𝑖 < 𝑘, 𝐹 𝑡0,𝑡1 𝑥𝑖 > 𝑘,

• 𝐺 𝑡0,𝑡1 𝑥𝑖 > 𝑘, 𝐹 𝑡0,𝑡1 𝑥𝑖 < 𝑘, …

• 𝑡0, 𝑡1, 𝑘 found by simulated annealing

2G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A Decision Tree Approach to
Data Classification using Signal Temporal Logic,” presented at the Proceedings of the 19th
International Conference on Hybrid systems: Computation and Control, New York, NY, USA,
2016, pp. 1–10.

• DNA segments representing genetic parts and modules can be
composed to create genetic circuits.

Composability in Synthetic Biology

DNA
Components

Genetic
Modules

Genetic
Circuit

• STL with added functionality:
• Concatenation (•) – allows one STL formula to connect to another in

sequence.

• Inputs – signals that are annotated as drivers of the formula.

• Outputs – signals that are annotated as being produced by the formula.

• Mapping – a collection of assignments among the inputs and outputs of STL
formulae.

• For instance, 𝜙 is composed of 𝜙1 and 𝜙2:

𝜙1 𝜙2
𝑖1

𝑜1

𝑜2

𝑖1

𝑖2

𝑜1

𝑜2

𝑜3

STL♭

• STL with added functionality:
• Concatenation (•) – allows one STL formula to connect to another in

sequence.

• Inputs – signals that are annotated as drivers of the formula.

• Outputs – signals that are annotated as being produced by the formula.

• Mapping – a collection of assignments among the inputs and outputs of STL
formulae.

• For instance, 𝜙 is composed of 𝜙1 and 𝜙2:

𝜙1 𝜙2
𝑖1

𝑜1

𝑜2

𝑖1

𝑖2

𝑜1

𝑜2

𝑜3

𝜙
𝑥1

𝑦1

𝑦2
𝑦3

STL♭

• Concatenation – 𝜙(𝑥1, 𝑦1, 𝑦2, 𝑦3) = 𝜙1(𝑖1, 𝑜1, 𝑜2) • 𝜙2(𝑖1, 𝑖2, 𝑜1, 𝑜2, 𝑜3).

• STL with added functionality:
• Concatenation (•) – allows one STL formula to connect to another in

sequence.

• Inputs – signals that are annotated as drivers of the formula.

• Outputs – signals that are annotated as being produced by the formula.

• Mapping – a collection of assignments among the inputs and outputs of STL
formulae.

• For instance, 𝜙 is composed of 𝜙1 and 𝜙2:

𝜙1 𝜙2
𝑖1

𝑜1

𝑜2

𝑖1

𝑖2

𝑜1

𝑜2

𝑜3

𝜙
𝑥1

𝑦1

𝑦2
𝑦3

STL♭

• Concatenation – 𝜙(𝑥1, 𝑦1, 𝑦2, 𝑦3) = 𝜙1(𝑖1, 𝑜1, 𝑜2) • 𝜙2(𝑖1, 𝑖2, 𝑜1, 𝑜2, 𝑜3).

• Input mapping – (𝜙: 𝑥1= 𝜙1: 𝑖1).

• STL with added functionality:
• Concatenation (•) – allows one STL formula to connect to another in

sequence.

• Inputs – signals that are annotated as drivers of the formula.

• Outputs – signals that are annotated as being produced by the formula.

• Mapping – a collection of assignments among the inputs and outputs of STL
formulae.

• For instance, 𝜙 is composed of 𝜙1 and 𝜙2:

𝜙1 𝜙2
𝑖1

𝑜1

𝑜2

𝑖1

𝑖2

𝑜1

𝑜2

𝑜3

𝜙
𝑥1

𝑦1

𝑦2
𝑦3

STL♭

• Concatenation – 𝜙(𝑥1, 𝑦1, 𝑦2, 𝑦3) = 𝜙1(𝑖1, 𝑜1, 𝑜2) • 𝜙2(𝑖1, 𝑖2, 𝑜1, 𝑜2, 𝑜3).

• Input mapping – (𝜙: 𝑥1= 𝜙1: 𝑖1).

• Output mapping – (𝜙: 𝑦1=𝜙2: 𝑜1) Λ (𝜙: 𝑦2= 𝜙2: 𝑜2) Λ (𝜙: 𝑦3= 𝜙2: 𝑜3).

• STL with added functionality:
• Concatenation (•) – allows one STL formula to connect to another in

sequence.

• Inputs – signals that are annotated as drivers of the formula.

• Outputs – signals that are annotated as being produced by the formula.

• Mapping – a collection of assignments among the inputs and outputs of STL
formulae.

• For instance, 𝜙 is composed of 𝜙1 and 𝜙2:

𝜙1 𝜙2
𝑖1

𝑜1

𝑜2

𝑖1

𝑖2

𝑜1

𝑜2

𝑜3

𝜙
𝑥1

𝑦1

𝑦2
𝑦3

STL♭

• Concatenation – 𝜙(𝑥1, 𝑦1, 𝑦2, 𝑦3) = 𝜙1(𝑖1, 𝑜1, 𝑜2) • 𝜙2(𝑖1, 𝑖2, 𝑜1, 𝑜2, 𝑜3).

• Input mapping – (𝜙: 𝑥1= 𝜙1: 𝑖1).

• Output mapping – (𝜙: 𝑦1=𝜙2: 𝑜1) Λ (𝜙: 𝑦2= 𝜙2: 𝑜2) Λ (𝜙: 𝑦3= 𝜙2: 𝑜3).

• Internal mapping – (𝜙1: 𝑜1= 𝜙2: 𝑖1) Λ (𝜙1: 𝑜2= 𝜙2: 𝑖2).

• STL with added functionality:
• Concatenation (•) – allows one STL formula to connect to another in

sequence.

• Inputs – signals that are annotated as drivers of the formula.

• Outputs – signals that are annotated as being produced by the formula.

• Mapping – a collection of assignments among the inputs and outputs of STL
formulae.

• For instance, 𝜙 is composed of 𝜙1 and 𝜙2:

𝜙1 𝜙2
𝑖1

𝑜1

𝑜2

𝑖1

𝑖2

𝑜1

𝑜2

𝑜3

𝜙
𝑥1

𝑦1

𝑦2
𝑦3

STL♭

Note: The mapping can be applied to other STL operators, not just concatenation.

• Concatenation – 𝜙(𝑥1, 𝑦1, 𝑦2, 𝑦3) = 𝜙1(𝑖1, 𝑜1, 𝑜2) • 𝜙2(𝑖1, 𝑖2, 𝑜1, 𝑜2, 𝑜3).

• Input mapping – (𝜙: 𝑥1= 𝜙1: 𝑖1).

• Output mapping – (𝜙: 𝑦1=𝜙2: 𝑜1) Λ (𝜙: 𝑦2= 𝜙2: 𝑜2) Λ (𝜙: 𝑦3= 𝜙2: 𝑜3).

• Internal mapping – (𝜙1: 𝑜1= 𝜙2: 𝑖1) Λ (𝜙1: 𝑜2= 𝜙2: 𝑖2).

Library

Genetic Modules Name STL Formula

Ф1

Ф2

Ф3

m1

m2

m3

Ф4

Ф5

Ф6

m4

m5

m6

••

Design Space Exploration

Root

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6

∧Ф2 Ф4 Ф6∧

•

Ф1

Ф1

•

•

m3 m4 m5 m6m2m1

m1
m6m4m2

m1

Design Space Exploration

Ф3

∧Ф2 Ф4 Ф6∧

• • •

Ф1

•

Design

STL Formula

m3

m2 m4 m6

m1

Root

Design Space Exploration

Ф3

∧Ф2 Ф4 Ф6∧

• • •

Ф1

•

Design

STL Formula

Ф3

m3

m2 m4 m6

m1

Root

Design Space Exploration

Ф3

∧Ф2 Ф4 Ф6∧

• • •

Ф1

•

Design

STL Formula

Ф3•Ф2

m3

m2 m4 m6

m1

Root

•

Design Space Exploration

Ф3

∧Ф2 Ф4 Ф6∧

• •

Ф1

•

Design

STL Formula

Ф3•Ф4

m3

m2 m4 m6

m1

Root

Design Space Exploration

Ф3

∧Ф2 Ф4 Ф6∧

• • •

Ф1

•

Design

STL Formula

Ф3•Ф6

m3

m2 m4 m6

m1

Root

Ф2

•

Design Space Exploration

Ф3

∧ Ф4 Ф6∧

• •

Ф1

•

Design

STL Formula

Ф3•(Ф2 ∧Ф4)

m3

m2 m4 m6

m1

Root

Ф2

•

Design Space Exploration

Ф3

∧ Ф4 Ф6∧

• •

Ф1

•

Design

STL Formula

Ф3•(Ф2 ∧Ф6)

m3

m2 m4 m6

m1

Root

Ф2

•

Design Space Exploration

Ф3

∧ Ф4 Ф6∧

• •

Ф1

•

Design

STL Formula

Ф3•(Ф4 ∧Ф6)

m3

m2 m4 m6

m1

Root

Ф2

•

Design Space Exploration

Ф3

∧ Ф4 Ф6∧

• •

Ф1

•

Design

STL Formula

Ф3•(Ф6• Ф1)

m3

m2 m4 m6

m1

Root

Design Space Exploration

Ф3

∧Ф2 Ф4 Ф6∧

• • •

Ф1

•

Design

STL Formula

m3

m2 m4 m6

m1

Ф3•(Ф2 ∧ (Ф6•Ф1)

Root

•

Design Space Exploration

Ф3

∧Ф2 Ф4 Ф6∧

• •

Ф1

•

Design

STL Formula

m3

m2 m4 m6

m1

Ф3•(Ф4 ∧ (Ф6•Ф1)

Root

•

Design Space Exploration

Ф3

∧Ф2 Ф4 Ф6∧

• •

Ф1

•

Design

STL Formula

m3

m2 m4 m6

m1

Ф3•(Ф2 ∧Ф4 ∧ (Ф6•Ф1)

Root

Ф1

Ф2

Ф3

m1

m2

m3

Root

Ф3

m3

Ф2

m2

Library

Ф2•Ф3

Constraint Pruning

Ф1

Ф2

Ф3

m1

m2

m3

Ф3

m3

Ф2

m2

Library

Ф1

m1

Cross Talk

Ф2•Ф3•Ф3

Constraint Pruning

Root

Possible RIFFL Circuit Designs

Future Work

•Currently, TLI requires both desirable and
undesirable traces.
•We are working on a method that only requires

desirable traces.

•We are adding constraints to help prune the
potential design space of the composed genetic
circuits.

•We are currently testing these methods on
mammalian and bacterial synthetic biology
examples.

Acknowledgements

Cristian-Ioan VasilePrashant Vaidyanathan Rachael Ivison

Junmin Wang Calin Belta Douglas Densmore

This work is supported by the National Science Foundation under grant CPS Frontier 1446607.

