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ABSTRACT 

  

DNA assembly and rational design are cornerstones of synthetic 

biology. While many DNA assembly standards have been published in 

recent years, only the Modular Cloning standard, or MoClo, has the 

advantage of publicly available part libraries for use in plant, yeast, and 

mammalian systems. No multipart modular library has previously been 

developed for use in prokaryotes. Building upon the existing MoClo 

assembly framework, we developed a collection of DNA parts and 

optimized MoClo protocols for use in E. coli. We present this assembly 

standard and library along with part characterization, design strategies, 
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potential applications, and troubleshooting. Developed as part of the 

Cross-disciplinary Integration of Design Automation Research (CIDAR) 

lab collection of tools, the CIDAR MoClo Library is publicly available and 

contains promoters, ribosomal binding sites, coding sequences, 

terminators, vectors, and a set of fluorescent control plasmids. Optimized 

protocols reduce reaction time and cost by >80% from previously 

published protocols. The CIDAR MoClo Library is the first bacterial DNA 

part library compatible with a multipart assembly standard.  

To demonstrate the utility of the CIDAR MoClo system in a 

traditional biology context, we used the library and previous expression 

data to create a series of dual expression plasmids. In this manner, we 

produced a dual expression plasmid capable of expressing equimolar 

amounts of two variants of rabbit aldolase, a His-tagged wildtype protein 

and a single-amino-acid substitution mutant deficient in binding actin. 

This expression plasmid will enable the production of dimer-of-dimer 

heterotetramers needed for structural determination of the actin-aldolase 

interaction by electron microscopy. To employ CIDAR MoClo in a 

synthetic biology context, we produced a bioelectronic pH-mediated 

genetic logic gate with DNA circuits built using MoClo and integrated with 

Raspberry Pi computers, Twitter, and 3D printed components. Logic 

gates are an increasingly common biological tool with applications in 

cellular memory and biological computation. MoClo facilitates rapid 
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iteration of genetic designs, better enabling the development of cellular 

logic.  

The CIDAR MoClo Library and assembly standard enable rapid 

design-build-test cycles in E. coli making this system advantageous for 

use in many areas of synthetic biology as well as traditional biological 

research.  
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1 CHAPTER 1 INTRODUCTION 

1.1 Synthetic biology 

Synthetic biology integrates engineering, biology, chemistry, and physics in 

a multidisciplinary research approach to biological engineering (Cameron et al. 

2014, Church et al. 2014). DNA assembly and modification is a cornerstone of the 

field, with applications ranging from cellular computation and memory devices to 

metabolic engineering and production of pharmaceuticals (Ro et al. 2006, Ham et 

al. 2008, Friedland et al. 2009, Bonnet et al. 2012, Keasling 2012). Increased 

modularity in genetic design in the form of publicly available libraries of 

characterized DNA parts provide a platform for rapid expression tuning of 

biological circuits (Casini et al. 2015). Likewise, the advent of affordable table top 

manufacturing is enabling new research approaches as 3D printing and computer 

numerical control (CNC) micromilling equipment and software tools become more 

available (O'Neill et al. 2014, Guckenberger et al. 2015).  

Recent examples of computation in living cells include genetic regulatory 

networks that count (Friedland et al. 2009) and a variety of approaches to creating 

Boolean logic in living cells (Tamsir et al. 2011, Siuti et al. 2013). Using 

recombinases enzymes which are able to cut DNA and invert the sequence, 

researchers created all 16 two-input logic gates in E. coli  with a single genetic 

module per gate (Siuti et al. 2013). Other logic gates designs have been produced 
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using common signaling pathways molecules in E. coli (Tamsir et al. 2011) and 

zinc-finger transcription factors in mammalian cells (Lohmueller et al. 2012).  

Synthetic biology has reoriented metabolic engineering, providing rational 

design tools for the modulation of biosynthesis and isolation of useful compounds 

(Salis 2011, Keasling 2012). A hallmark publication, the antimalarial medication, 

Artemisinin, was produced in yeast providing an alternative source of the high-

demand drug through a partnership with the Gates Foundation (Ro et al. 2006). In 

addition to biomedical applications, metabolic engineering is also being employed 

to produce high value molecules currently produced from petroleum (Lee et al. 

2012).  

Rapid DNA assembly forms the foundation of the design-build-test 

paradigm in synthetic biology across all of these applications. Despite 

improvements in the technologies, high throughput iterative designs and 

combinatorial methods are still cost prohibitive in a synthesis-based assembly due 

to the lack of reusable parts (Czar et al. 2009, Kosuri and Church 2014). As a 

result, a variety of DNA assembly standards based off a variety of methodologies 

have arisen in the previous 15 years to meet this demand.  

Multipart DNA assembly has become a common tool in genetic engineering 

methodologies since the publication of the Gibson and Golden Gate assembly 

methods (Engler et al. 2009, Gibson et al. 2009). While complex genetic designs 

can be built with synthesis-based assembly techniques, these methods produce 
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no standardized reusable parts and require novel synthesis for every iteration of 

design. The most efficient assembly method for a given application is largely 

application dependent.  

1.2 Assembly methodologies and standards 

Commonly used assembly methods are listed in Figure 1-1, part of a survey 

performed to determine the enabling technologies in synthetic biology (Kahl and 

Endy 2013). According to this survey, synthesis based methods including Gibson 

assembly (Gibson et al. 2009) are the most commonly used assembly methods 

followed closely by BioBrick (Knight 2007), Gateway (Katzen 2007), and BglBrick 

(Anderson 2010) assembly standards. Each of these methods are described 

further in this section.  

Gibson and synthesis based methods are ideal for many applications 

including genome engineering, but remain cost prohibitive for high throughput 

cloning and combinatorial assembly. Gateway cloning was one of the earliest 

standards developed, however it is primarily designed for moving full gene units. 

BioBrick and BglBrick standards offered the first modular DNA part assembly 

systems and libraries of basic parts (i.e. promoters, coding sequences), combining 

two parts at a time in a consuming binary fashion. 
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Figure 1-1 Survey of enabling technologies: DNA assembly methods and standards. List of 
commonly used DNA assembly methods and standards as published by (Kahl and Endy 2013). 

Golden Gate and its derivatives, including Modular Cloning (MoClo), were 

the first multipart modular assembly standards available, allowing for the reliable 

assembly of up to 6 parts at a time (Engler et al. 2009, Weber et al. 2011). At the 

time this survey was taken, however, DNA part libraries were not yet widely 

available reducing the utility of these standards. In the past two years, part libraries 

have become increasingly available for eukaryotic MoClo platforms. This work 

describes the development of an E. coli MoClo assembly standard. With these part 
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libraries available, MoClo and related multipart assembly standards are rapidly 

becoming more widely used.  

DNA assembly standards can largely be broken down by the underlining 

methodology employed. In general, all assembly methods utilize one or more of 

the following tools; restriction endonucleases (RE), homing endonucleases (HE), 

Type IIS restriction endonucleases (Type IIS), or annealing overlapping ends (OE) 

(Casini et al. 2015). Assembly standards are further categorized by the ability to 

hierarchically assemble large constructs, to reuse parts with a modular design, and 

to assemble more than two parts in a single reaction. The most effective practices 

often utilize multiple assembly methods. 

1.2.1 Restriction endonucleases 

Restriction endonuclease (RE) digest and ligation techniques, traditional 

molecular biology methods, have been used to cut and paste DNA since the 1970s 

(Cohen et al. 1973). RE methods generally only join two DNA parts and are 

sensitive to illegal restriction sites, recognition sequences which may occur 

naturally within the sequence of the part and interfere with the cloning reaction. 

Complex DNA engineering with traditional cloning is an art form onto itself, 

requiring extensive planning and verification of intermediate steps.  

One of the first assembly standards developed, BioBricks (Knight 2007, 

Smolke 2009), uses standard RE methods with standard prefixes and suffixes 

each containing two restriction enzyme recognition sequences. BioBrick parts are 
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cut in a standard fashion resulting in a new part which contains the same prefix 

and suffix sequences while destroying the connecting restriction site. This allows 

for hierarchical assembly with a small number of enzymes.  

The brick-like assembly format is derived from the use of isocaudomers, 

restriction enzymes which recognize different sequences yet produce the same 

overhangs. When ligated, these overhangs produce ‘dead’ sites, sequences which 

are no longer recognized by either enzyme. These sites are referred to as ‘scars’ 

and are known to influence circuit behavior and stability (Sleight and Sauro 2013). 

BioBricks provided a foundation for standard, modular parts and gained traction as 

the method adopted by the International Genetically Engineered Machines 

competition (iGEM) (Smolke 2009).  

Though widely used, the BioBricks standard is limited by the binary nature 

of RE assembly methods. Parts are susceptible to illegal restriction sites and often 

require mutation of natural sequences for new parts. The binary nature of RE 

cloning assembly methods requires sequential step-by-step assembly increasing 

the time involved in the design-build-test cycle to produce iterative designs.  

1.2.2 Homing endonucleases 

Homing endonucleases (HE) function similarly to traditional restriction 

endonucleases but recognize longer sequences. This makes illegal sites unlikely. 

An early form of modular DNA assembly, HE methods first appeared with the 

Gateway cloning system commercialized by Invitrogen in the 1990s.  
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Gateway uses recombinases enzymes and long repetitive insertion 

sequences, att sites, to direct cloning. A concerted effort was made to create 

Gateway compatible plasmids carrying human, mouse, rat, and yeast open 

reading frames to support the research community (Gelperin et al. 2005, Nakajima 

et al. 2005, Giuraniuc et al. 2013). However, the att sites that grant modularity in 

Gateway cloning remain in the assembly as large scars between parts which can 

influence expression behavior (Chee and Chin 2015). 

Multiple HE assembly standards have arisen in recent years including an 

adaptation of the BioBrick standard termed iBrick (Liu et al. 2014) and the 

HomeRun Vector Assembly System (HVAS) based on a modified Gateway 

assembly standard (Li et al. 2014). These assembly systems also leave scars 

between assembled parts (i.e. residual modified or inserted sequences). In HE 

standards, the scars are generally larger than the BioBrick standard due to the 

increased size of the recognition sequence. 

1.2.3 Overlapping ends 

In order to streamline complex DNA assembly beyond the capabilities of 

traditional RE cloning, various methods rely on the annealing of complementary 

sequences by using parts with long overlapping ends to assemble intermediate 

parts (Horton et al. 1989, Bitinaite 2007, Gibson et al. 2009, Quan and Tian 2009, 

Annaluru 2012). Overlapping ends methods can be seamless or may use linker 

sequences leaving scars between parts in order to increase modularity. These 
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assembly methods are often used in concert with computer aided design tools to 

optimize assembly and design oligos automatically (Hillson et al. 2012, Appleton 

et al. 2014). 

Gibson assembly has become a common method in research laboratories 

with 48% of researchers surveyed reporting current use of the Gibson method 

(Kahl and Endy 2013). This scarless method allows for precision cloning of 

complex devices through synthesis of intermediate parts. However, though the 

cost of synthesis continues to decrease, Gibson and similar methods largely 

remain cost prohibitive for combinatorial assemblies and iterative design strategies 

(Kosuri and Church 2014).  

1.2.4 Type IIS restriction endonucleases 

An increasingly large collection of assembly standards relies upon Type IIS 

restriction endonucleases (Casini et al. 2015). These enzymes recognize non-

palindromic sequences and cut at a specific distance up or downstream of the 

recognition sequence. The first method published using these enzymes, Golden 

Gate (Engler et al. 2009), uses PCR products or stored plasmid DNA and two 

enzymes in a simultaneous one-pot digestion-ligation reaction. By reusing DNA 

parts, minimizing synthesis costs, Golden Gate formats tend to be less costly than 

Gibson assemblies.  

A variety of assembly standards have been published which utilize or modify 

the Golden Gate assembly strategy including Modular Cloning (Weber et al. 2011), 
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GoldenBraid (Sarrion-Perdigones 2011, Sarrion-Perdigones et al. 2013), BASIC 

(Storch et al. 2015), and yeast Golden Gate (yGG) (Agmon et al. 2015). 

Increasingly, combinations of assembly methods are being used to efficiently build 

complex DNA devices (Werner et al. 2012). This is the case with BASIC which 

combines overlapping ends and Type IIS enzymes to create an idempotent parts 

which are attached in a multipart single-tier assembly using linkers (Storch et al. 

2015).  

1.2.5 Modular cloning (MoClo) – Type IIS standard 

Of the assembly methods developed to date, only one, MoClo, has 

significant part libraries available for eukaryotic (Weber et al. 2011, Duportet et al. 

2014), yeast (Lee et al. 2015), plant systems (Engler et al. 2014) and now also for 

E. coli (Iverson et al. 2015). MoClo exploits user-defined overhangs specific to 

each part type such as a promoter or a coding sequence (CDS), thereby creating 

interchangeable DNA modules in the form of plasmids. This format allows for 

simple library propagation and combinatorial assembly from a library of reusable 

parts with reliable ligation of up to six DNA fragments in a one-pot reaction (Weber 

et al. 2011). 

The original MoClo publication described a complex system using two color 

and three antibiotic selection in a rotating hierarchical assembly standard (Weber 

et al. 2011). These protocols called for high concentrations of DNA and long 

reaction times (>5 hours) and were cost prohibitive (~$10 per reaction). In order to 
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be effective as a high throughput assembly standard in E. coli, a more efficient 

protocol was needed.  

Here we have optimized the published protocols, simplified the hierarchical 

assembly format, and created a library of reliable DNA parts for use in E. coli. The 

CIDAR MoClo Library described in Chapter 3 provides the first E. coli Type IIS 

compatible part library and is now available through Addgene (Iverson et al. 2015). 

This library enables rapid combinatorial assembly in bacteria and has practical 

applications in many fields including protein engineering, expression tuning, and 

library screening.  

To demonstrate the utility of the CIDAR MoClo Library outside of the 

synthetic biology community, we have collaborated with the Tolan lab in the 

Biology department at Boston University to tune the protein expression of two 

variants of the rabbit aldolase protein and enable isolation of the heterotetramers 

formed when these two variants are co-expressed. To employ CIDAR MoClo in a 

synthetic biology context, in Chapter 5 we produced a bioelectronic pH-mediated 

genetic logic gate with DNA circuits built using MoClo and integrated with 

Raspberry Pi computers, Twitter, and 3D printed components. An overview of 

these three chapters can be seen in Figure 1-2. 
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Figure 1-2 Overview of thesis. Chapter 3 describes the development and optimization of the 

CIDAR MoClo assembly standard and E. coli part library. Chapter 4 demonstrates the utility of this 

library and part characterization data to rationally design a equimolar dual expression cassette for 

production of heterotetrameric alodase proteins. Chapter 5 explores applications of the CIDAR 

MoClo assembly standard in devleoping bioelectronic cellular logic systems and incorporates 3D 

printing and computer numerical control (CNC) milling.  

1.3 Aldolase enzymatic and moonlighting functions 

Aldolase enzymes catalyzes an aldol reaction or its reverse. Two classes 

of aldolase have been identified with class I enzymes being cofactor-independent 

in catalyzing aldol reactions while class II enzymes employ a metal ion cofactor 

(Rutter 1964). Fructose-1,6-bisphosphate (Fru 1,6-P2) aldolase, referred to 

commonly and in this writing as simply ‘aldolase’, has a central role in fructose 

metabolism, glycolysis, and gluconeogenesis.  
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Aldolase catalyzes a reversible reaction that splits fructose 1,6-

bisphosphate into dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-

phosphate (G3P) (Horecker et al. 1980)(Figure 1-3a). Aldolase isozymes are 

further classified by expression in different tissues. Aldolase A, found in muscle, 

and aldolase C, found in brain, show higher efficiency for Fru 1,6-P2 versus 

fructose 1-phosphate (Fru 1-P) as these enzymes are primarily involved in 

gluconeogenesis and glycolysis. Aldolase B however shows equal efficiency for 

the two substrates corresponding to the importance of fructose metabolism in the 

liver where it is predominantly expressed (Penhoet and Rutter 1971). 

Monomeric and dimeric aldolase possess full catalytic activity (Beernink 

and Tolan 1994, Beernink and Tolan 1996), yet aldolase is found only as tetramers 

in vivo (Penhoet et al. 1967, Penhoet and Rutter 1971) with the exception of rare 

mutations which disrupt the dimer interface. Therefore the tetrameric form implies 

other functions for aldolase beyond the classical catalytic activity of the protein. 

With a dissociation rate of 10-25 M3 (monomer-tetramer equilibrium) (Tolan et al. 

2003), aldolase tetramers demonstrate an unusually stable formation compared to 

other glycolytic enzymes.  

Penhoet and Rutter (1971) dismissed the possibility of allosteric regulation 

with steady-state kinetic analysis showing no cooperativity. In a study 

demonstrating that the structure of the dimer and that of one hemisphere of the 

tetramer do not differ significantly, the researchers conclude that stability of the 
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tetramer suggest aldolase evolved as a ‘multimeric scaffold for non-catalytic 

functions’ (Sherawat et al. 2008). Supporting this assertion, class I aldolases 

display a high degree of amino acid conservation at both the active site and subunit 

interface residues (Rottmann et al. 1984, Rottmann et al. 1987, Sygusch et al. 

1987). 

The tetrameric form of aldolase has two distinct subunit interfaces; the A 

interface is hydrophobic while the B interface is hydrophilic (Sherawat et al. 

2008)(Figure 1-3b). Disruption of either interface by mutations at key sites leads 

to the dissociation of the tetramer into dimer form. These mutations do not, 

however, dramatically alter the tertiary structure of aldolase (Sherawat et al. 2008).  

A clinically relevant mutation, D128G, disrupts the B interface and has been 

associated with a rare nonspherocytic hemolytic anemia (Kishi et al. 1987). 

Aldolase with D128G or other mutations of this residue maintain catalytic activity 

with reduced thermostability and are found in dimer form. Mutations of Gln-125 

also disrupt the B interface while maintaining actin binding activity (Beernink and 

Tolan 1994).  

Dimer formation can also be seen with the disruption of the A interface by 

mutations at Glu-224 and Arg-258. Active monomers can be produced by 

disrupting the remaining interface with a second mutation as seen with the 

Q125D/E224A double mutant (Beernink and Tolan 1996). However, these 

monomers are not seen in vivo. 



 

14 
 

1.3.1 Moonlighting functions 

Consistent with the use of this tetramer as a scaffold, aldolase has been 

noted to moonlight in a variety of cellular processes. Many of these involve binding 

to F-actin, such as signal transduction, cell motility, and vesicle trafficking (Wang 

et al. 1996, Wang et al. 1997, Schindler et al. 2001, Ritterson Lew 2012). Known 

moonlighting interactions of actin are summarized in Figure 1-3c.  

Of particular interest, aldolase interacts with the thrombospondin-related 

Apicomplaxan protein (TRAP) family of transmembrane proteins found in the 

protozoan parasites responsible for malaria and toxoplasmosis (Sibley 2003). 

Aldolase forms a bridge between TRAP proteins and the actin cytoskeleton. This 

bridge allows the parasites to move, enabling infection (Jewett and Sibley 2003).  
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Figure 1-3 Aldolase function and moonlighting. (a) Aldolase function in 

glycolysis/gluconeogenesis. (b) Aldolase tertiary structure, tetramer. (c) Known protein interactions 

involving aldolase suggesting roles in signal transduction, motility, and vesicle trafficking.  

Previous research on the interaction between aldolase and actin proteins 

has determined that aldolase enzymatic activity and actin binding activity are 

independent. Mutations that affect enzyme activity do not hinder actin binding and 

vice versa (Wang et al. 1996). In particular, an arginine residue was substituted to 

create the R42A mutant aldolase which is catalytically active yet has a 20-fold 

decrease in affinity for F-actin. Conversely, the D33S variant retains affinity for F-

actin while being catalytically inactive (Wang et al. 1996).  
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1.3.2 Decorating F-actin 

Aldolase forms a scaffold for actin filaments, facilitating crosslinking 

(Schindler et al. 2001, Jewett and Sibley 2003, Pirani et al. 2004, Pirani 2008) 

(Figure 1-4a,b). The predominantly tetrameric aldolase offers two actin binding 

surfaces, functioning to crosslink actin filaments in non-symmetrical arrays making 

characterization of the binding interface difficult. An aldolase oligomer which 

creates symmetrical arrays is needed to decorate actin for structural determination 

of the binding interface by electron microscopy. 

The D128V aldolase mutant forms a dimer and functions as a scaffold for 

actin filaments without providing a second surface for crosslinking (Figure 1-4c). 

However, the symmetrical structure of the D128V dimer inhibits elucidation of the 

binding interface. A dimer-of-dimers in which only one dimer is able to crosslink 

could provide an appropriate aldolase-actin interaction for structure determination.  

A His-tagged wildtype rabbit aldolase (HRA) in a dimer-of-dimer formation 

with the R42A actin-binding-deficient aldolase variant may provide the structure 

needed for structure determination (Figure 1-4a,d). However, the N-terminal His-

tag appears to have a significant effect on protein expression such that duel 

expression of these otherwise nearly identical aldolase variants in the pETDuet 

expression plasmid produces HRA at a fraction of the level of R42A (Ho and Tolan, 

personal communication). High levels of protein expression of both variants is 
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needed to either produce predominately dimer-of-dimer heterotetramers in vivo or 

to create them in vitro through hybridizatoin.  

With the in vitro method for producing heterotetramers, isolated protein of 

each variant can be denatured to form monomers then mixed to produce all 

possible heterotetramers compositions. These are then separated by charge with 

chromatography on a salt gradient. However, loss of protein during renaturation 

and charge separation steps have thus far prevented significant production of 

dimer:dimer aldolase tetramers for structure characterization experiments.  

In order to produce predominately dimer-of-dimer heterotetramers in vivo, 

equimolar expression of these two variants is required in a single plasmid. 

Previous attempts at dual expression have resulted in an approximately 1:10 

difference in expression of R42A to HRA due, apparently, to the N-terminal His-

tag (Ho and Tolan, personal communications). To address this issue, we have 

used the CIDAR MoClo Library and previously gathered part characterization data 

to tune the expression of HRA and R42A and assemble a dual expression plasmid 

with approximately equimolar expression of HRA and R42A.  
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Figure 1-4 Aldolase HRA-R42A heterotetramers for decorating F-actin. (a) Aldolase CDS and 

protein monomer icon legend is shown. Wildtype aldolase has both traditional catalytic activity and 

actin-binding ability. His-tagged wildtype (HRA) retains both catalytic and actin-binding activity. 

R42A aldolase mutant retains catalytic activity while demonstrating a 20-fold decrease in actin-

binding activity. (b) Actin requires a scaffold upon which to structure filaments. Addition of µM 

wildtype aldolase provides a sufficient scaffold. As only a dimer is needed for scaffolding purposes, 

the stable wildtype tetramer creates crosslinked structures by providing two actin binding interfaces. 

(c) In comparison, the D128V disrupts the tetramer interface and this mutant exists predominately 

in dimer form. D128V dimers allow for actin scaffolding without crosslinking. However the 

symmetrical form of the dimer makes defining the actin binding interface difficult. (d) HRA-R42A 

heterotetramers may enable actin scaffolding while preventing crosslinking with a non-symmetrical 

aldolase complex. The charge difference between HRA and R42A should allow for the separation 

of different heterotetramers identifies. The species highlighted inside the black box are needed for 

actin-decorating. The bottom two-two heterotetramer is not expected to bind actin and will have no 

influence on downstream experiments.  
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1.4 Rational design of genetic circuits 

Rational design of biological devices, as described in 1.3.2, require well 

characterized parts and is facilitated by utilization of a standardized assembly 

format. Part libraries which better enable the rapid assembly of DNA devices are 

increasingly available and contain parts with known behaviors. In many cases 

while efforts have been made to compile libraries of parts, standard 

characterization methods and reliably predictably function parts are still lacking 

(Casini et al. 2015).  

1.4.1 Enhancing rational design capabilities 

In 2009, BIOFAB: International Open Facility Advancing Biotechnology 

(BIOFAB) was founded as a biological design-build-test facility. Researchers at the 

BIOFAB developed libraries of engineered constitutive and controllable promoters 

and translation elements (Mutalik et al. 2013a) and studied methods for accurately 

quantifying DNA part behavior (Mutalik et al. 2013b).  

These translation elements, termed bicistronic designs (BCDs), decouple 

transcription from translation by introducing an intermediate cistron between the 

promoter and the gene of interest. A 30 a.a. peptide is translated under the control 

of a standard ribosome binding sequence (RBS), and contains a stop codon and 

secondary RBS overlapping the start codon of the gene of interest. By disrupting 

the secondary structure between the promoter and second RBS, the use of a BCD 

was shown reduce variability in fluorescence expression 10-fold, from 16% to 1.6% 
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(Mutalik et al. 2013a). Three of these BCD parts, described in Chapter 3, were 

included in the CIDAR MoClo library to enable more rational design.  

Many methods of predicting protein expression and device behavior rely 

upon quantification of promoter and RBS sequences. Defining promoter 

sequences is often complicated as promoter components may be spread across 

hundreds of base pairs and controllable promoters (inducible/repressible) have an 

added factor of dose response to be considered. To approach this issue, 

researchers have proposed various methods for quantifying promoter (Beal et al. 

2012, Mutalik et al. 2013b). 

Most notable of these is the RBS calculator (Salis 2011)  created to provide 

a simple, accessible tool to aid in synthetic genetic design. The RBS calculator is 

an online tool which calculates theoretical RBS strength as a factor of secondary 

structure (https://salislab.net/software/) (Salis et al. 2009, Salis 2011). Other tools 

exist for more complex aspects of genetic design including Cello (Cellular Logic), 

a tool for designing cascading cellular logic from abstract specifications (Nielsen 

et al. 2016). 

1.5 Cellular logic; Boolean biology 

Cellular logic refers to the use of engineered circuits in living systems which 

can compute signals. The Voigt Lab at MIT has previously published a variety of 

transcriptional logic gates using inducible promoters and repressor proteins. One 

of these designs is shown in Figure 1-5. In order to create an XOR gate, cells 
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carrying specific plasmids were spotted in close proximity on media with or without 

inducer.  

 

Figure 1-5 XOR gate as an example logic gate. (a) Four different cell strains are required to 

isolate components of the logic gate. Extruded signaling molecules from the first strain act as 

inducers for the second level of strains in Cell 2 and Cell 3. Only in the presence of one or the other 

inducer molecule is the output, YFP, expressed. (b) pOR30 is the plasmid used in Cell 4 and also 

used in Chapter 5.  

These and other designs have demonstrated the potential for computational 

logic in cells (Friedland et al. 2009, Tamsir et al. 2011, Siuti et al. 2013). However, 

the need for compartmentalization of partial circuits in individual cells to prevent 

transcriptional cross talk is limiting. Some attempts to control crosstalk have looked 

to microfluidics to physically separate components of cellular logic. 

If these cellular logic and microfluidic designs could be miniaturized, 

automated, and integrated with an electronic system, more functional computation 

could be seen. The Cello software tool aids the design of computational logic within 

cellular systems by defining cascades built from a library of genetic logic gates, 

fulfilling the need for automation (In press, Science 2015). Meanwhile, CNC milling, 

3D printing and open source electronics systems could serve to provide the 
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miniaturization and bioelectronic integration aspects and lay the groundwork for 

more functional cellular computing.  

1.6 Bioelectronic synthetic biology; CNC milling, 3D printing and adaptive 

research tools 

Additive and subtractive manufacturing are increasingly affordable tools for 

synthetic biology. Tabletop 3D printers and computer numerical control (CNC) mills 

are commercially available in the range of $900-$2200. Free and open source 

software tools, such as OpenSCAD (www.openscad.org/) and Blender 

(https://www.blender.org/), facilitate the rapid design and iteration of increasingly 

complex microfluidics and custom tools (Gutierrez-Arenas 2015, Oxman 2015).  

3D printing is particularly useful for designing custom devices and housings 

for electronic systems, as is the case with the syringe pump designed at MIT 

(Wijnen et al. 2014). This syringe pump provides an affordable alternative to 

commercially available injection devices and can be controlled electronically with 

open source devices. Examples of 3D printing and CNC milling in synthetic biology 

can be seen in Figure 1-6.  

Integration of these tools, MoClo, 3D printing, CNC milling, and affordable 

electronics, opens the door for a wide range of bioengineered tools. Since all 

components of these designs are easily accessible and affordable, designs can be 

placed online and replicated anywhere in the world.  
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Figure 1-6 CNC and 3D printing in synthetic biology. Examples of 3D printing and CNC milling 

in synthetic biology include (a) an open source 3d printed turbidostat, (b) an open source library of 

3d printed syringe pumps, and (c) various CNC micromilling methods for microfluidics. Additionally, 

online design tools like 3DµF (cidarlab.github.io/3DuF/) enable intuitive simple design of 3 

dimensional objects with a standard .stl file format which is easily interchanged between tools.  
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2 CHAPTER 2 MATERIALS AND METHODS 

2.1 General supplies and reagents 

PCR performed using Phusion polymerase (NEB Cat #M0530L). Plasmid 

preparations and PCR cleanup were done using Qiagen Plasmid Mini Prep 

(Qiagen Cat #12125) and Qiagen Qiaquick PCR Purification Kit (Qiagen Cat 

#28106) following the manufacturers protocols. Transformations were performed 

with 6-15 μL of Alpha Select Gold Efficiency E. coli cells (Bioline USA Inc., 

Taunton, MA, USA) with a standard heat shock protocol (incubate on ice with DNA 

5’, 42°C 90”, return to ice and recover in LB or SOC media).  

2.2 Bacterial culturing and DNA handling 

2.2.1 Bacterial strains, growth and storage conditions 

For general cloning, Alpha Select Gold Efficiency DH5α E. coli cells (Bioline 

USA Inc., Taunton, MA, USA) were used in volumes of 5-10 µL per transformation. 

All plasmids are stored in these cells as glycerol preps and generally these are the 

cultures used in plasmid preps for sequencing and for use in MoClo reactions.  

Cells were plated on appropriate antibiotic selective LB agar, supplemented 

with 80 μL of 20 mg/μL 5-bromo-4-chloro-3-indolyl ß-D-galactopyranoside (X-GAL) 

and 100 μL of 0.1M isopropyl-ß-D-thiogalactopyranoside (IPTG) (Zymo Research 

Corp., Irvine, CA, USA). Blue-white screening was used to select colonies which 

were grown overnight at 37°C in LB supplemented with the appropriate antibiotic. 
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In Chapter 5, Top10 (DH10B derived) cells were used in some experiments 

as noted in specific chapters.  

2.2.2 Plasmid nomenclature 

Plasmid names are abbreviations of the component parts as follows (Figure 

2-1). pJ02B2Rm_AE(A) or pR404mGm_EF(K). In this format, “p” indicates 

“plasmid” verses describing the insert alone. The next three characters are 

generally a capital letter and two numbers identifying the promoter. In these 

examples, J02 = J23102 and R40 = R0040, both BioBrick parts. The next two or 

three digits identify the RBS or RBS type part which through this writing will be one 

of six parts. “2m”, “3m”, “4m” refer to the Weiss RBS parts from the BioBrick 

registry, B0032, B0033, and B0034; “m” indicates the parts have been modified 

and these parts contain the flanking BioBrick scar sequences to maintain the 

original BioBrick spacing. “B2”, “B8” and “B12” refer to three of the BIOFAB 

bicistronic design elements, BCD2, BCD8 and BCD12 which are cloned as _BC 

parts and treated as RBS part types for cloning purposes though they actually 

contain a small coding sequence and second RBS site.  

The characters between the RBS designation and the “_” indicate the 

coding sequence. Commonly these are seen as “Rm” or “Gm” indicating a red 

fluorescent protein (RFP) or green fluorescent protein (GFP) coding sequence. 

Here “m” indicates a modification from the original sequence usually pertaining to 

the removal of one or more illegal restriction endonuclease recognition sequences. 
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The capital two letter code after the underscore denote the 5’ and 3’ fusion sites, 

respectively. The B0015 terminator sequence is used for all plasmids discussed in 

these works and is not denoted in the plasmid name. The capital letter in 

parenthesis at the end indicates the antibiotic resistance of the vector used, either 

ampicillin (A), kanamycin (K) or chloramphenicol (C). 

 

Figure 2-1 CIDAR MoClo plasmid nomenclature. Plasmids are given unique names with 

descriptive abbreviations to allow for simple identification. Grey part symbols are used to indicate 

a generic part type rather than a specific part. 

When describing a generic part within a plasmid, an X is used as a wildcard 

to indicate this part is not specifically designated. For example, pJXB2Rm_AE 

would describe any plasmid or a collection of plasmids which have a J23 series 
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promoter, BCD2, and E1010m (RFP) in an _AE vector. Similarly, in all figures grey 

symbols indicate an undefined part. Using this nomenclature, pJ02B2Rm_AE(A) 

can be easily identified as a transcription unit containing J23102, BCD2, E1010m 

(RFPm), and B0015 in that order cloned into the DVA_AE vector which carries the 

ampicillin resistance gene, bla. 

Lists of plasmids with component parts explicitly described are found in 

Table A-7. 

2.2.3 Basic part and vector preparation & validation 

Plasmid prep cultures were grown up overnight in 3-5 mL of LB with 

appropriate antibiotic or grown for 6-8 hours during the day in instances where 

same day sequencing was needed. 

2.2.3.1 Basic parts general cloning strategy  

Basic parts were either amplified from plasmids obtained from BioBricks 

(http://partsregistry.org/) or Addgene (Addgene.org, Cambridge, MA, USA) or, if 

the part was less than 35 bp, were assembled using annealing oligonucleotides 

containing the appropriate fusion sites and BsaI restriction sequences. PCR 

reactions were performed as above. Complimentary oligonucleotides were heated 

to 95°C and cooled at a rate of 0.5°C/minute to a final temperature of 45°C before 

being diluted for use in a MoClo reaction as above. This PCR product or annealed 

DNA was then used in a Level 0 or Basic Part MoClo reaction as described below 

and in Figure 3-1.  
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2.2.3.2 Destination vectors 

The lacZ alpha fragment was PCR amplified pMJS2AF (donated by Dr. 

Michael Smanski) and subsequently cloned into two backbones: DVA vectors used 

pSB1A2, DVK vectors used pSB1K3. DNA containing the lacZ alpha fragment was 

used as template for PCR reactions (20 fmol). PCR reactions with Phusion DNA 

polymerase (NEB) following the manufacturer’s protocol and  were performed as 

follows: denaturation at 95°C for 1’, 30 extension cycles  (98°C 20”, 61°C 20”, 72°C 

20”), 5’ extension at 72°C, hold 4°C. PCR product was gel extracted and cleaned 

using QIAquick PCR Purification Kits (Qiagen Inc., Valencia, CA, USA). 

LacZ PCR products and pSB1K3 and pSB1A2 vectors were digested with 

SpeI enzyme (NEB) according to the manufacturer’s protocol, cleaned up using 

the QIAquick PCR Purification Kit (Qiagen). Ligation reactions used T4 DNA ligase 

(NEB). Cells were plated on appropriate antibiotic selective LB agar, supplemented 

with 80 μL of 20 mg/μL 5-bromo-4-chloro-3-indolyl ß-D-galactopyranoside (X-GAL) 

and 100 μL of 0.1M isopropyl-ß-D-thiogalactopyranoside (IPTG) (Zymo Research 

Corp., Irvine, CA, USA). Blue colonies were selected and sequence verified.  

DVL2 carried an illegal BsaI site in the bla ampicillin resistance gene, which 

was fixed with PCR mutagenesis as described in Weber et. al (2011) to create a 

new vector, DVA.  



 

29 
 

2.2.3.3 Transcription Unit (Level 1) and Device (Level 2) assembly 

Transcription units, generally consisting of a promoter, RBS part, CDS, and 

terminator assembled in a DVL1 / DVK vector, and Devices, multiple transcription 

units combined in a DVL2 / DVA vector, were assembled using the MoClo 

protocols as described in 2.3.  

2.2.3.4 Plasmid isolation and sequence analysis  

Plasmids were purified using the QIAprep Spin Miniprep kit (Qiagen) 

following the manufacturers’ protocols. Sequences were validated with the 

standard BioBrick vector primers, Vector Forward (VF2) (5’-tgccacctgacgtctaagaa-

3’) and Vector Reverse (VR) (5’-attaccgcctttgagtgagc-3’) primers. In larger 

constructs internal primers were used to sequence verify on a case by case basis. 

Sequences were analyzed using Benchling (www.benchling.com). 

2.2.4 DNA parts construction 

In total, ### parts were constructed for use in the CIDAR MoClo assembly 

standard. The initial CIDAR collection consisted of ## basic parts built in DVL0 

(Chloramphenicol) vectors derived from pSB1C3 (BioBrick Part Registry) and ## 

destination vectors (DVL0, DVL1, and DVL2). These parts were used in optimizing 

MoClo protocols and building most of the transcription units described in this 

thesis. The final CIDAR MoClo standard and library replaces the DVL0 vectors 

with DVA vectors (DVL2 with repaired illegal site) and many basic parts were 

recloned into DVA vectors for the final published CIDAR library.  

http://www.benchling.com/
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2.2.4.1 Initial 3 antibiotic CIDAR part collection 

The initial CIDAR parts collection consisted of BioBrick parts converted to 

MoClo format in a destination vector carrying chloramphenicol resistance, DVL0, 

derived from the BioBrick vector pSB1C3. The parts were chosen for their utility 

and verified function within the iGEM Parts Registry.  

All promoters and the B0015 terminator were cloned as four variations with 

appropriate fusion sites as described in Figure 3-1. Including both basic parts and 

destination vectors, 128 plasmids were cloned, verified, and archived as the initial 

CIDAR MoClo collection. All information about these parts was recorded and 

maintained in the CIDAR Registry, a detailed excel file. Approximately 18% of 

these parts were cloned by the 2012 and 2013 BostonU iGEM teams and other 

members of the CIDAR lab. A list of these parts is found in Table A-6. Primer 

design used in assembly are noted in Table A-4. 

2.2.4.2 Final CIDAR collection and CIDAR MoClo Library 

In order to increase efficiency of cloning and increase plasmid yield, all of 

the basic parts to be used in the CIDAR MoClo Library were converted from the 

DVL1 (Chloramphenicol, CAM) backbone to the DVA (Ampicillin, AMP, backbone 

with repaired illegal site). DVA provided higher plasmid DNA concentrations 

(average ~100 ng/µL verses ~20 ng/µL) and simplifies the library system by 

removing CAM plasmids from the rotation. Level 0 (Basic Parts) and Level 2 
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(Devices) both use DVA vectors minimizing the number of assembly vectors 

required. 

While preparing the CIDAR MoClo Library, 6 coding sequence parts were 

cloned a second time to replace incorrect sequences or to remove illegal sites. A 

total of 17 new DVA vectors were created as well as the DVK_AF vector to allow 

for vector context comparison of two-part Devices. Additionally, empty DVA and 

DVK vectors were cloned, closed on a SpeI site and lacking the LacZ cassette and 

fusions sites to enable the production of new vectors. 

2.3 CIDAR MoClo assembly methods 

2.3.1 Original and Optimized MoClo Protocols 

Initial MoClo assembly reactions followed the previously published protocol 

(Weber et al. 2011), using 45 cycles alternating between 37°C 2’ and 16°C 5’ 

followed by 50°C 5’ and 80°C 10’ with 40 fmol of each DNA part, 10 U of restriction 

enzyme, 10 U of T4 ligase (Promega) with 1x Promega T4 ligase buffer in a 20 µL 

volume.  

In developing optimal protocols, various reaction conditions were tested. 

The following components were added to a 0.2 mL tube: 10-60 fmol of each DNA 

component with up to six components total using equimolar PCR product or 

previously made MoClo DNA parts, and the appropriate Destination Vector, 10-50 

U of BsaI or BbsI (NEB), 5-50 U of T4 DNA ligase (Cat #M1794, Promega, 

Madison, WI, USA or #M0202 NEB), 1 X T4 DNA Ligase Buffer (Promega or NEB), 
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and sterile, deionized water to at total volume of 10-60 µL. Reactions were 

performed using the following parameters: 15-40 cycles (37°C 1.5-3’, 16°C 3-5’), 

followed by 50°C for 5’ and 80°C for 10’ then held at 4°C or -20°C until transformed.  

By comparing efficiencies and costs, the optimal protocol was determined 

as follows: 10 fmol of each DNA component, 10 U of BsaI or BbsI, 20 U of T4 

Ligase (NEB or Promega) and 1x T4 DNA Ligase Buffer (Promega only) to a final 

volume of 10-20 µL depending on concentration of DNA parts. Lower volumes are 

preferred.  

2.3.2 Multiplex MoClo Protocols 

MoClo reactions were prepared as above with the following differences: The 

multiplex part type(s) was added such that the total concentration of that type was 

equimolar to the other part types. When multiplexing less than 6 of any one part 

type, samples were pipetted individually. To accommodate accurate 

measurements, multiplex reactions were performed in 20 µL volumes with 60 fmol 

of each part type. For example, in a reaction using 6 different promoters, 10 fmol 

each of these promoters was used along with 60 fmol of each other part. For larger 

multiplex examples all iterations of a given part type are mixed in equimolar ratio 

prior and added as one mixed part.  
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2.4 Fluorescence analysis 

2.4.1 Flow cytometry 

All fluorescent expression devices were characterized using a BD 

LSRFortessa SORP flow cytometer. RFP fluorescence was measured using a 

solid-state Coherent Sapphire 561 nm laser at 100 mw strength with a PE-Texas 

Red 610/20 filter. GFP fluorescence was measured using a solid-state Coherent 

Sapphire 488 nm laser at 200 mw strength with a FITC 530/30 filter. Clonal 

colonies were grown overnight on agar with antibiotic and were used to inoculate 

200 µL LB broth (Sigma-Aldrich) with the appropriate antibiotic in sterile 96-deep 

well plates in triplicate grown for 16 hours,37°C shaking, 300 rpm. Cells were then 

diluted 100-fold into 200 µL of sterile phosphate buffered saline (PBS) in 96-well 

round bottom plates before measurement. 

2.4.2 Plate reader for optical density and fluorescence measurements 

A Tecan SpectraFluor Plus plate reader with Magellen v6.6 software was 

used for optical density (OD or OD600) measurements and to measure 

fluorescence in culture. Measurements were performed in 96-well plates with 200 

µL volumes. For OD, default settings were used along with blank wells to provide 

background subtracted data. For fluorescence, top and bottom read options were 

used as noted with manual gain and filter settings as follows: RFP – ex. 580 / em. 

635, gain 87. GFP – ex. 485 / em. 535, gain 89.  
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2.4.3 Two color control array and color model 

In order to create an accurate color model, a series of high and low 

expression RFP and GFP transcription units, described here as two-color controls 

were evaluated by flow cytometry as in 2.4.1. These TUs were assembled in _AE 

and _EF DVK, transferred to DVA, and assembled into dual expression devices in 

_AF DVA vectors. This series was designed to provide both the _AE and _EF 

context for each TU as well as both variants of dual expression plasmids for each. 

A subset of eBFP2 transcription units were also assembled as part of this series 

for comparison. A complete list of these two-color control plasmids is included in 

Table 2-1.  

The two-color controls were measured by flow cytometry in triplicate, 

overnight cultures diluted 1:100 in PBS and measured as described in 2.4.1. In 

order to normalize to fluorescein, one color used in the model must register with 

the FITC filter set (generally either YFP or GFP). For this color model, designed 

for use primarily with red and green fluorescence, GFP and RFP constructs were 

used to build the color model.  

To enable normalization, expression of each fluorescent reporter needed to 

be high enough to register cleanly on all appropriate fluorescence channels. This 

initial flow cytometry data identified J02B2 as the promoter/RBS combination ideal 

for use as the color model due to its consistently high level of expression in different 
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constructs. A small number of eBFP2 transcription units were made to test ability 

of a RFP:GFP color model to predict expression in another filter set. 

Plasmid ID 2CC# Construct 

pJ02B2Rm_AE(K) 2CC01 J23102:BCD2:RFP:B0015 

pJ02B2Gm_EF(K) 2CC02 J23102:BCD2:GFP:B0015 

pJ02B12Rm_AE(K) 2CC03 J23102:BCD12:RFP:B0015 

pJ02B12Gm_EF(K) 2CC04 J23102:BCD12:GFP:B0015 

pJ024mRm_AE(K) 2CC05 J23102:B0034m:RFP:B0015 

pJ024mGm_EF(K) 2CC06 J23102:B0034m:GFP:B0015 

pJ022mRm_AE(K) 2CC07 J23102:B0032m:RFP:B0015 

pJ022mGm_EF(K) 2CC08 J23102:B0032m:GFP:B0015 

pJ14B2Rm_AE(K) 2CC09 J23114:BCD2:RFP:B0015 

pJ14B2Gm_EF(K) 2CC10 J23114:BCD2:GFP:B0015 

pJ14B12Rm_AE(K) 2CC11 J23114:BCD12:RFP:B0015 

pJ14B12Gm_EF(K) 2CC12 J23114:BCD12:GFP:B0015 

pJ144mRm_AE(K) 2CC13 J23114:B0034m:RFP:B0015 

pJ144mGm_EF(K) 2CC14 J23114:B0034m:GFP:B0015 

pJ142mRm_AE(K) 2CC15 J23114:B0032m:RFP:B0015 

pJ142mGm_EF(K) 2CC16 J23114:B0032m:GFP:B0015 

pJ02B2Rm:Gm_AF(A) 2CC18 J02B2Rm:J02B2Gm 

pJ02B12Rm:Gm_AF(A) 2CC19 J02B12Rm:J02B12Gm 

pJ024mRm:Gm_AF(A) 2CC20 J024mRm:J024mGm 

pJ022mRm:Gm_AF(A) 2CC21 J022mRm:J022mGm 

pJ14B2Rm:Gm_AF(A) 2CC22 J14B2Rm:J14B2Gm 

pJ14B12Rm:Gm_AF(A) 2CC23 J14B12Rm:J14B12Gm 

pJ144mRm:Gm_AF(A) 2CC24 J144mRm:J144mGm 

pJ142mRm:Gm_AF(A) 2CC25 J142mRm:J142mGm 

pJ02B2Gm_AE(K) 2CC38 J23102:BCD2:GFP:B0015 

pJ02B2Rm_EF(K) 2CC39 J23102:BCD2:RFP:B0015 

pJ024mGm_AE(K) 2CC40 J23102:B0034m:GFP:B0015 

pJ024mRm_EF(K) 2CC41 J23102:B0034m:RFP:B0015 

pJ02B2Gm:Rm_AF(A) 2CC42 pJ02B2Gm:pJ02B2Rm 

pJ024mGm:Rm_AF(A) 2CC43 pJ024mGm:pJ024mGm 

pJ02B2B_AE(K) 2CC44 J23102:BCD2:eBFP2:B0015 

pJ02B2B_EF(K) 2CC45 J23102:BCD2:eBFP2:B0015 

pJ02B2Rm:B_AF(A) 2CC46 pJ02B2Rm:pJ02B2B 
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Plasmid ID 2CC# Construct 

pJ02B2Gm:B_AF(A) 2CC47 pJ02B2Gm:pJ02B2B 

pJ02B2B:Gm_AF(A) 2CC48 pJ02B2B:pJ02B2Gm 

pJ02B2B:Rm_AF(A) 2CC49 pJ02B2B:pJ02B2Rm 

pJ02B2Rm_AE(A) 2CC01(A) J23102:BCD2:RFP:B0015 

pJ02B2Gm_EF(A) 2CC02(A) J23102:BCD2:GFP:B0015 

pJ02B12Rm_AE(A) 2CC03(A) J23102:BCD12:RFP:B0015 

pJ02B12Gm_EF(A) 2CC04(A) J23102:BCD12:GFP:B0015 

pJ024m1Rm_AE(A) 2CC05(A) J23102:B0034m:RFP:B0015 

pJ024m1Gm_EF(A) 2CC06(A) J23102:B0034m:GFP:B0015 

pJ022mRm_AE(A) 2CC07(A) J23102:B0032m:RFP:B0015 

pJ022mGm_EF(A) 2CC08(A) J23102:B0032m:GFP:B0015 

pJ14B2Rm_AE(A) 2CC09(A) J23114:BCD2:RFP:B0015 

pJ14B2Gm_EF(A) 2CC10(A) J23114:BCD2:GFP:B0015 

pJ14B12Rm_AE(A) 2CC11(A) J23114:BCD12:RFP:B0015 

pJ14B12Gm_EF(A) 2CC12(A) J23114:BCD12:GFP:B0015 

pJ144m1Rm_AE(A) 2CC13(A) J23114:B0034m:RFP:B0015 

pJ144m1Gm_EF(A) 2CC14(A) J23114:B0034m:GFP:B0015 

pJ142mRm_AE(A) 2CC15(A) J23114:B0032m:RFP:B0015 

pJ142mGm_EF(A) 2CC16(A) J23114:B0032m:GFP:B0015 

pJ02B2Gm_AE(A) 2CC38(A) J23102:BCD2:GFP:B0015 

pJ02B2Rm_EF(A) 2CC39(A) J23102:BCD2:RFP:B0015 

pJ024mGm_AE(A) 2CC40(A) J23102:B0034m:GFP:B0015 

pJ024mRm_EF(A) 2CC41(A) J23102:B0034m:RFP:B0015 

pJ02B2Gm:Rm_AF(K) 2CC42(K) pJ02B2Gm:pJ02B2Rm 

pJ024mGm:Rm_AF(K) 2CC43(K) pJ024mGm:pJ024mGm 

Table 2-1 Table of Two Color Control (2CC) plasmids used to develop color model. These 

plasmids can also be found online in the public Benchling directory. 

2.4.4 TASBE tools 

Flow cytometry data was converted from arbitrary units to compensated 

Molecules of Equivalent Fluorescein (MEFL) using the TASBE characterization 

method (Beal et al. 2012). An affine compensation matrix is computed from single 

color and blank controls: RFP alone (J23102:BCD2:E1010m:B0015, abbreviated 
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as pJ02B2Rm, in _AE and EF DVAs), GFP alone (J23102:BCD2:E0040m:B0015 

abbreviated as pJ02B2Gm, in _AE and EF DVAs), RFP:GFP 

(pJ02B2Rm:J02B2Gm in _AF DVAs) as well as the reciprocal GFP:RFP 

(pJ02B2Gm:J02B2Rm in _AF DVAs) together and untransformed DH5 Alpha 

Select E. coli cells (Bioline), respectively. FITC measurements (for GFP) are 

calibrated to MEFL using SpheroTech RCP-30-5-A beads (Spherotech 2001). An 

estimated mapping from RFP measured in the PE-Texas Red channel to 

equivalent FITC is computed from transformation of constitutive co-expression of 

RFP and GFP expressed together (RFP:GFP as pJ02B2Rm:J02B2Gm as _AF in 

DVA, GFP:RFP as pJ02B2Gm:J02B2Rm as _AF in DVA); RFP measurements are 

translated to MEFL by first mapping to estimated equivalent FITC. Geometric 

statistics are then computed over data in MEFL units. 

2.5 CIDAR MoClo Library preparation 

2.5.1 Glycerol storage 

All plasmids made for use in CIDAR MoClo and specifically for the published 

CIDAR MoClo Library were sequence verified and stored at -80°C as individual 

glycerol preps in 300-1mL of LB with 25% glycerol. In preparation for submitting 

the CIDAR MoClo Library to Addgene, and to provide backup stocks for internal 

use, the glycerol stocks were used to inoculate fresh plates and single colonies 

from theses plates were used to inoculate 96 well deep culture plates (1mL max 

volumes). These plates were grown overnight in 500 µL of LB with appropriate 
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antibiotic and frozen after addition of 25% glycerol, mixed by shaking at 900 rpm 

sealed with PCR sealing film.  

2.5.2 Benchling 

All plasmids described in this text can be found in public folders on the 

Benchling lab management tool at https://benchling.com/siverson/. 

2.5.3 CIDAR-ICE 

All plasmids in the CIDAR MoClo Library are made public in the CIDAR 

Inventory of Composable Elements (ICE) web based inventory (http://cidar-

ice.org). The ICE platform was initially developed by the Joint BioEnergy Institute 

(JBEI, www.jbei.org) to facilitate the sharing of DNA parts between research 

groups and facilities (Ham et al. 2012).  

2.6  Aldolase Methods 

2.6.1 Plasmid design of aldolase expression cassettes 

HRA_CD and R42A_CD were cloned as basic parts with the DVA_CD 

vector as described previously using PCR templates provided by the Tolan lab. 

Extrapolating from the RFP and GFP data presented in section 3.2.3 (Figure 3-3 

and Figure 3-4), three _AB and two _EB plasmid configurations were chosen 

which were predicted to produce similar high expression of the gene of interest 

(goi). These plasmids were chosen due to their low variability in replicates and 

similarity between green and red expression cassettes and are described in detail 

in 4.2.1 and Table 4-1 and at https://benchling.com/siverson/. Each chosen 
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combination of promoter, RBS part, vector and aldolase variant (HRA_CD or 

R42A_CD) were assembled using standard MoClo protocols as described in 

section 2.3.1.  

The HRA transcription units were designated pJ06B12HRA_AE(K), 

pJ07B2HRA_AE(K), pJ07B12HRA_AE(K), pJ02B2HRA_EF(K), 

pJ02B12HRA_EF(K) and nicknamed Tolan-1 through Tolan-5 respectively. The 

HRA transcription units were designated pJ06B12R42A_AE(K), 

pJ07B2R42A_AE(K), pJ07B12R42A_AE(K), pJ02B2R42A_EF(K), 

pJ02B12R42A_EF(K) and nicknamed Tolan-6 through Tolan-10 respectively. 

Tolan-1 and Tolan-6 differ only in by goi, and likewise for the rest of this series (2 

and 7, 3 and 8, etc.). Sequences were verified using VF2 and VR primers as 

described previously.  

Each combination of pJXBXHRA_AE and pJXBXR42A_EF were combined 

to create the dual expression cassettes expressing HRA upstream of R42A. 

Likewise, each combination of pJXBXR42A_AE and pJXBXHRA_EF were also 

created for a combined total of twelve _AF(A) duel expression plasmids (Figure 

4-1). These plasmids are designated as follows; pJXBXHRA:pJXBXR42A_AF(A) 

where pJ6B12HRA:pJ02B2R42A_AF(A) would be described as Tolan-1-9 as it 

consists of Tolan-1 and Tolan-9 transcription units. These duel expression 

plasmids were provided to the Tolan lab for protein isolation and quantification. 
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Due to the nearly perfect sequence homology between HRA and R42A, 

varying only with the 5’ His tag and a single internal amino acid substitution, 

separation and quantification by antibody methods is difficult. To aid in analyzing 

the relative expression of each component of the duel expression cassettes, each 

Tolan-1 through-10 were subcloned into DVA vectors to provide Tolan-1(A), Tolan-

2(A), etc.  

Upon sequence verification, all of these plasmids were provided to the 

Tolan lab for protein isolation and quantification. 

2.6.2 Plasmid design of aldolase fluorescent protein fusion plasmids 

Concurrently, fluorescent fusion protein (FP) coding sequences were 

constructed by linking the first 36 nucleotides of each aldolase variant to the full 

CDS of E0040m (GFP) and E1010m (RFP) as shown in Figure 4-4 and annotated 

online at https://benchling.com/siverson/. These fusion protein coding sequences, 

HRA:GFP_CD, HRA:RFP_CD, R42A:GFP_CD, and R42A:RFP_CD were used to 

assemble the fluorescent of expression plasmids described in 2.6.1 in order to use 

fluorescence as a proxy for aldolase protein expression.  

2.6.3 Fluorescence measurement of fusion proteins 

Fluorescence expression of aldolase:FP fusion expression plasmids was 

recorded using a Tecan plate reader with Magellen software as described in 2.4.2.  
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2.6.4 Protein expression analysis 

Western blots using α-aldolase and α-His antibodies were performed on 

lysates from each of these dual expression clones and compared to isolated 

protein standards for HRA and R42A (Tolan lab).  

2.7 Inducible pH sensor methods 

2.7.1 Bacterial strains, growth conditions 

Initial experiments were done using DH5α cells (Bioline, Alpha Select Gold 

Efficiency E. coli). Later experiments used TOP10 cells as noted in the text. 

Plasmids were built using MoClo as described previously and are described in 

Chapter 5. Cultures used for single time point pH assays were grown under 

standard conditions in 14mm plastic culture tubes, 3 mL LB with appropriate 

antibiotic, 37°C 300 rpm, and pH was tested at defined time points. 

Final experiments and logic gate tests were grown as described with the 

addition of continuous monitoring. Briefly, the pH probe was placed in the culture 

(1.5 mL) while shaking, sealed with parafilm, with wires placed carefully along the 

seam of the incubator to connect to the Raspberry Pi placed nearby. pH 

measurement method are described below. Culture for inducible YFP expression 

with the pOR30 plasmid was grown overnight under standard conditions. For YFP 

induction, 100 µL of overnight culture was aliquoted to a well in a 96 well plate 

along with control wells containing 100 µL of overnight growth of appropriate 

cultures and 100 µL of fresh LB and sealed with breathable film. Upon induction 
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as described below, 100 µL of inducer diluted in LB was injected into the sealed 

well. The plate was incubated at 37°C, 900 rpm for 2 hours.  

2.7.2 Plasmid designs 

DVK_AE was used as a control for LacZ expression. pR10LacZDV_AE was 

built to mimic DVK with modular parts and inducible Lac promoter (BBa_R0010). 

pBADLacZDV:J024mC80_AF contains two transcription units which express LacZ 

and AraC to allow for inducible expression with arabinose. 

pTetLacZDV:J024mC40_AF was built to constitutively express the tetracycline 

repressor, TetR derived from the BioBrick part C0040, to allow for induction of 

LacZ expression via the pTet promoter and the inducer molecule anhydrous 

tetracycline (aTc).  

pOR30 was a gift from the Voigt lab at the Massachusetts Institute of 

Technology (MIT). This plasmid expresses YFP under the control of the pLas 

promoter to enable inducible expression with N-3-oxo-dodecanoyl-L-Homoserine 

lactone (HSL) (Cayman Chemicals, Cat #10007895, CAS 168982-69-2).  

2.7.3 Evaluation of pOR30 

Induction curves were performed with concentrations of HSL ranging from 

1 mM to 100 mM over a period of two hours with a 1:2 dilution of overnight culture 

and fresh LB. A final concentration of 10 mM was determined to be optimal with a 

1-2 hour incubation time at 37°C, 900 rpm. 
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2.7.4 pH measurements with Raspberry Pi 

A Raspberry Pi processor was programmed language to interpret the signal 

from an Atlas Scientific pH probe (Cat #ENV-40-pH) with an Ezo pH Circuit (Cat 

#EZO-pH)after calibration with standard pH calibration solutions (pH 4, 7, and 10) 

(Cat #KIT-101P). PuTTY terminal (www.putty.org) was used to control the 

Raspberry Pi interface.  

2.7.5 pH mediated induction of YFP 

Upon sensing a target pH value the Raspberry Pi connected to the pH probe 

was programmed to submit a Twitter post to the @CIDARlab Twitter feed using 

the Twitter API. This tweet functioned as the input signal for a second Raspberry 

Pi connected to a servo motor and a 3D printed syringe pump calibrated to 

dispense 100 µL (+/- 3 µL) through 7/32” medical grade tubing and 14G needle 

point. Upon detecting the Tweet from Raspberry Pi 1, Raspberry Pi 2 activated the 

servo motor to inject 100 µL of 20 µM homoserine lactone in LB into a sealed well 

of a 96 well plate to induce the expression of YFP in cells carrying the pOR30 

plasmid (Voigt Lab, MIT).  

2.8 CNC milling and 3D printing 

All 3D printing, done with an Ultimaker 2 printer and stock materials, and 

CNC milling using an Othermill CNC mill and polycarbonate (PCA) stock, was 

performed by Ryan Silva, at Boston University. An open source .stl design for a 

syringe pump was modified for use in Chapter 5. The original designs were 

http://www.putty.org/


 

44 
 

developed at MIT (Wijnen et al. 2014) and files can be found online 

(http://matter.media.mit.edu/tools/details/3d-printed-syringe-pump). 

A 5x5 array of wells, styled after a 96-well plate, was CNC milled in PCA 

designed to fit into the D8-H12 region of a 3D printed 96-well plate frame. The 5x5 

well array was sterilized with alcohol and bleach before inoculation of cultures in 

LB with appropriate antibiotic. The array was sealed with breathable culture film, 

placed inside the 96-well plate frame and incubated at 37°C, 900 RPM in a shaking 

plate incubator. 
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3 CHAPTER 3 IMPROVED MULTIPART, MODULAR, DNA ASSEMBLY 

(CIDAR MOCLO) AND NEW E. COLI COMMON PART LIBRARY 

3.1 Introduction 

MoClo, which was developed by Weber et. al in 2011, relies upon Type IIS 

restriction enzymes (BbsI and BsaI). Each recognize a 6 base pair non-palindromic 

sequence and cut at a specified distance from that recognition sequence resulting 

in overhanging 4 bp fusion sites (Figure 3-1). Due to the nature of these cutting 

patterns, the 4 bp fusion sites can be any four nucleotides and can thus be defined 

as standard sites in this assembly method. For example, CDS parts are flanked 

with ‘-AATG-’ at the 5’ end and ‘-AGGT-’ on the 3’ end making all parts 

interchangeable. The restriction recognition sites are placed and oriented such that 

the digest product ends in these specific four base pair overhangs and no longer 

contains the restriction enzyme recognition sequence. Once ligated it cannot be 

recut allowing for a hierarchical multipart assembly.  

The original MoClo protocol allowed for the reliable assembly of up to six 

parts in a five hour digestion-ligation reaction with large reagent volumes and 

rotating use of three antibiotics and two color selection modules. Although this 

provided a substantial improvement in modularity compared to Golden Gate, the 

reaction conditions were still time and cost-prohibitive for most applications. Here 

we introduce a modified protocol (Table A-2) that, while maintaining the same 

capacity for assembling multiple modules and a >95% cloning efficiency, also 
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reduces reaction time from five hours to 90 minutes and lowers reaction costs by 

85% while simplifying the hierarchical assembly standard. 

Two variations of the CIDAR MoClo system are described in this chapter. 

The first, the 3 antibiotic selection (3Ab MoClo) system was initially used in the 

CIDAR lab to build many of the plasmids discussed throughout this chapter. In 

order to streamline and optimize the CIDAR MoClo standard, this system was later 

converted to a two antibiotic selection system which and published as the CIDAR 

MoClo assembly standard and library.  

3.2 Results 

3.2.1 3Ab MoClo parts collection, 3 antibiotic assembly standard 

To create destination vectors, pSB1C3, pSB1K2 and pSB1A2 BioBrick 

vectors were modified by inserting a LacZ alpha fragment expression cassette 

flanked with BbsI and BsaI recognition sequences and MoClo fusion sites into a 

SpeI site. Flanking sequences are shown in Table A-5. Adapted from the original 

published MoClo protocols, fusion sites were chosen as shown in Figure 3-1. An 

array of commonly used BioBrick parts were adapted for use in a MoClo standard 

by cloning into the pSB1C3 derived DVL0 vectors.  

The 3Ab MoClo parts collection and standard used an alternating series of 

vectors (Figure 3-1). Basic parts were provided in a Destination Vector Level 0 

(DVL0) derived from BBa_pSB1A2, with BsaI sites flanking the part and fusion 

sites. These basic parts combine to create a simple transcription unit (TU) 
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consisting of promoter:RBS:CDS:terminator in a Level 1 kanamycin vector (DVL1) 

derived from BBa_pSB1K3 with BbsI sites flanking the newly constructed TU. 

These units can be further combined into multi-TU devices in the same manner 

using a Level 2 ampicillin vector (DVL2).  

We created a standard four-part structure that allows users to easily 

assemble a genetic device consisting of a promoter, RBS, CDS, and terminator. 

This basic format provides a solid foundation for high throughput assembly while 

remaining adaptable to addition of new parts (i.e. new fusion site combinations) 

and part types. This 3Ab system (Haddock et al. 2015) was later adapted to 

become the CIDAR MoClo assembly standard.  
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Figure 3-1 Initial three antibiotic selection assembly standard. The initial CIDAR MoClo part 

collection used a three-tier antibiotic resistance standard with basic parts (Level 0) cloned into 

DVL0 chloramphenicol resistance plasmids, transcription units (Level 1) in DVL1 kanamycin 

resistant plasmids and devices (Level 2) in DVL2 ampicillin resistant plasmids. 
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3.2.2 Optimized MoClo protocols  

The originally published MoClo protocols used 40 fmol of each DNA part 

and a five hour incubation at 37°C with final 5’ 50°C and 10’ 80°C steps. In the 

largest assembly published in this study the authors used a cycling protocol to 

increase efficiency which consisted of 45 cycles of alternating 2’ 37°C and 5’ 16°C 

with the same final steps. Both of these protocols provided high efficiency cloning 

and both required approximately 5.5 hours of incubations (Weber et al. 2011).  

In order to optimize the MoClo protocols both time- and cost-sensitive 

parameters were evaluated. Identical reactions were performed (Level 1, 

fluorescent expression transcription units) using a cycling MoClo protocol with 15, 

20, 25, 30 or 40 cycles (37°C 1.5 or 3’, 16°C 3 or 5’), followed by 50°C for 5’ and 

80°C for 10’ then held at 4°C or -20°C until transformed in either Bioline Alpha Gold 

Select DH5α cells or the same strain prepped with the Zymo chemically competent 

cell preparation kit.  

BsaI (NEB Cat #R0535S) and BbsI (NEB Cat #R0539S) were used in all 

assemblies as appropriate. NEB T4 Ligase (Cat #M0202L) and Promega T4 

Ligase (Cat # M1794) were compared, each tested with NEB T4 Ligase Buffer (Cat 

#B0216L) and Promega T4 Ligase Buffer (Cat #C1263). Number of cycles, length 

of steps, reaction volume and reagent concentration were varied.  
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Figure 3-2 Optimization of Weber protocol to develop CIDAR MoClo protocols. Optimization 

of protocols decreased cost from approximately $10 to $1.50 per reaction, reduced time from 5 

hours to less than 90 minutes and maintained >95% cloning efficiency. Volumes, concentrations, 

cycling times, and number of cycles were each evaluated.  

 

3.2.3 Two color controls, color model, and part characterization 

We used the library and protocols to construct the 2 Color Controls (2CC) 

series of plasmids described in 2.4.3. FACS analysis was run as described in 2.4.1 

and the data was used to define the ideal color controls for future FACS 

experiments. Additionally, these plasmids were used to create a color model by 

normalizing flow cytometry fluorescence data to SpheroTech RCP-30-5-A beads 

as a fluorescein standard (Figure 3-3a). This color model allows us to directly 

correlate RFP and GFP expression as molecules of equivalent fluorescein (MEFL) 

counts rather than arbitrary units (Figure 3-3b). 

This color model was validated by comparing MEFL counts of 28 pairs of 

plasmids with various promoter, RBS, and fusion site combinations (mean square 
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error = 1.80 fold) in which each pair differed only in the coding sequence 

(E0040m_CD GFP or E1010m_CD RFP) (Figure 3-3c).  

 

Figure 3-3 Molecules of Equivalent Fluorescein (MEFL) normalization of flow cytometry data. 

SpheroTech 8-peak beads provide a basis for normalizing across fluorescence channels using a 

physical standard. (a) Peaks visible with selected laser voltages and filters for green fluorescent 

protein (left) and red fluorescent protein (right). RFP measurements are translated to MEFL by first 

mapping to estimated equivalent FITC. Geometric statistics are then computed over data in MEFL 

units. (c) To validate MEFL normalization, 28 pairs of transcription units were compared in which 

only the CDS varied (RFP on the y-axis verses GFP counterparts on the x-axis). An approximate 

1:1 ratio is observed with a mean square error of 1.80 fold. 
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An array of GFP reporters composed of 16 constitutive promoters (J23100 

Anderson series) and 6 RBS type parts (3 Weiss RBS, 3 BCD) constructed to 

characterize the transcription and translation elements to explore the potential for 

rational design using these parts. The resulting 96 iterations of a simple GFP 

expression plasmid in a DVK_AE vector were analyzed using flow cytometry 

(Figure 3-4a,b). Two-way ANOVA analysis identified 36.3% of expression 

variation as being due to the promoter, 43.9% due to RBS part, and 19.3% due to 

the interaction of the two factors.  

 

Figure 3-4 Array of expression vectors constructed from a collection of 16 consitutive 

promoters and 6 RBS type parts (3 Weiss RBS, 3 BCDs). (a) Construction of arrays with multiple 

promoters and RBS parts, one CDS part, one terminator, vector. (b) pJXGm_AE(K) expression 

array consists of 16 promoters and six RBS parts. TUs containing RBS parts B0034m, BCD2, and 

BCD12 and promoters J23100, J23101, J23102, and J23118 have the highest GFP fluorescence. 

(c) Subset of the contexts demonstrated in (b) with RFP in place of the GFP CDS. (d) Subset of 

the contexts demonstrated in (b) with RFP in place of GFP and flanked with _EF fusion sites in 

place of _AE. In both c and d a similar expression pattern can be seen with B0034m, BCD2, and 

BCD12, J23100, and J23102 demonstrating high levels of expression. Max and min for each array 

(color coded) are noted in MEFL units.    
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To compare the expression patterns with a different CDS, a subset of this 

array was made using RFP in place of GFP (Figure 3-4a,c). The overall pattern 

appears similar, though the range of expression is approximately 2-fold larger than 

with the corresponding GFP array (max MEFL value of 50902 as compared to 

22693). A third small array was analyzed using the RFP transcription units in a 

DVK_EF vector as compared to the DVK_AE vector in Figure 3-4 parts b and c. 

This subset shows a much smaller range and lower max signal compared to the 

RFP _AE array in part c offering the first indication that the flanking fusion sites 

influence expression.  

 

Figure 3-5 Pairwise comparisons of context effects. (a) Single TU expression compared to the 

same TU when expressed in the same plasmid with another TU. Expression of a single TU is 

consistent when assembled into a larger device. (b) Changing vector from DVA to DVK shows a 

high level of variability, suggesting all expression tuning should be done in the same vector. (c) 

Changing the 4 base pair fusion sites flanking a given TU influences expression likely due to the 

proximity of the 5’ fusion site to the minimal 35 bp promoter used in this study.  

To further assess the capability for rational design under commonly varied 

genetic contexts, other pairwise comparisons were performed to evaluate the 

effects of gene order, variation in vector, and use of specific fusion sites flanking 
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the transcription unit. Expression of a single TU was shown to remain constant 

when expressed in a plasmid with a second TU up- or downstream (Figure 3-5a) 

(mean sq. error = 1.53 fold). Changing the vector from DVA to DVK while 

maintaining the same transcription unit showed a higher variability yet retained a 

nearly linear relationship (mean sq. error = 2.61 fold) (Figure 3-5b).  

Modifying the four base fusion sites did have an effect on expression 

(p<0.001) in a paired analysis in the _EF transcription unit when compared to the 

_AE paired clone (mean sq. error = 2.02 fold) (Figure 3-5c). This difference may 

be due to the proximity of the 5’ fusion site to the simple promoter. Including an 

insulator upstream of the promoter sequences may mitigate this effect. 

In order to select the constitutive promoters to be included in the CIDAR 

MoClo Library, the data from Figure 3-4b was graphed as seen in Figure 3-6, and 

Figure 3-7. Six constitutive promoters were chosen which would provide a full 

range of expression capabilities (as defined by GFP expression ranging from 102 

– 105 MEFLs) when paired with these six RBS parts, also included in the library. 

The MEFL data used to create Figure 3-3c, Figure 3-4, Figure 3-5, Figure 3-6, 

and Figure 3-7 can be found in Appendix A along with a concise histogram of the 

GFP expression of promoter:RBS combinations included in the library (Figure 

A-2). 
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Figure 3-6 GFP expression under the control of variable promoters and RBS. Data here sorted 

by promoter to guide selection of promoter parts in future constructs. Same data as presented in 

Figure 3-4b. Subset of data for parts included in the CIDAR Library are in Appendix A.  

 

 

Figure 3-7 GFP expression under the control of variable promoters and RBS. Data here sorted 

by RBS to guide selection of RBS parts in future constructs. Same data as presented in Figure 

3-4b. Subset of data for parts included in the CIDAR Library are in Appendix A. 
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3.2.4 Publicly available CIDAR MoClo E. coli part library and assembly standard 

Most of the parts contained in the CIDAR E. coli MoClo Library are derived 

from the BioBricks Registry (http://parts.igem.org/) and were selected for their 

functional reliability and utility in synthetic biological designs (Table A-7). To 

enable rational design, three of the basic parts were selected from the BIOFAB 

collection of BCD translational elements which have been shown to enable more 

rational design in terms of protein expression (Mutalik et al. 2013a). These BCD 

parts contain a leader peptide followed by a secondary RBS in order to physically 

separate transcriptional and translational regulation. 
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Figure 3-8 CIDAR MoClo Library, part and vector structure. The CIDAR MoClo Library provided 

in a 96-well plate (Addgene, #1000000059). CIDAR MoClo assembly standard is based on four 

part transcription units comprised of a promoter, ribosome binding site, coding sequence and 

terminator assembled into a DVK (Kanamycin-resistance destination vector). Destination vectors 

alternate antibiotic resistance at each level and use lacZα blue-white selection. 

Destination vectors are included in the library to allow for simple cloning of 

new parts with any of the standard fusion site pairs. From the initial 3Ab assembly 

standard, the DVL0 vectors have been removed from the rotation and replaced 
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with the DVA vector (Figure 3-8). DVA is derived from DVL2 which was a modified 

pSB1A2 carrying an illegal site in the bla ampicillin antibiotic resistance gene. This 

illegal site was repaired with a synonymous single codon mutation to produce DVA. 

All basic parts are provided in DVA vectors. These are then assembled into 

transcription units in DVK vectors (previously designated as DVL1) (Figure 3-9). 

The circuit or device level of assembly combines two or more TUs into a DVA 

vector. Further hierarchical assembly is possible by continuing the DVA – DVK 

rotation.  

In addition to the parts and vectors, a set of fluorescent expression plasmids 

is also included to be used as standards with the TASBE flow cytometry analysis 

tools (Beal et al. 2012) (Table A-7). Sequence and part information for all plasmids 

is available in the CIDAR Inventory of Composible Elements (ICE) registry 

(http://cidar-ice.org). Other plasmids for use in E. coli not included in this library 

are available upon request. 
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Figure 3-9 CIDAR MoClo Assembly Standard. Basic parts shown with green backbones are 

prepared in DVAs with part specific fusion sites, indicated with single capital letters. The 3’ fusion 

site of the upstream part must match the 5’ fusion site of the following part in order to be correctly 

assembled. Digesting parts and a DVK with the BsaI and simultaneous ligation with T4 DNA ligase 

results in a transcription unit (TU) shown here with the orange backbone. Multiple TUs can be 

combined into a complex device using BbsI in place of BsaI with the appropriate DVA. 
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3.2.5 Multiplex Modular Cloning (MMC) 

As a MoClo reaction is dependent upon equimolar ratios of each part type, 

a logical advance on the methodology is to multiplex reactions by adding various 

plasmids of the same part type at 1/n the concentration of each other part type 

where n equals the total number of iterations. Multiplex MoClo (MMC) allows for 

an expanded utility including simultaneously screening a large number of iterations 

in parallel while retaining >95% cloning efficiency. Examples of this methodology 

include screening of variant sequences, or modulating expression levels of a single 

transcription unit by multiplexing the promoter and/or RBS part (Figure 3-10). 

Multiplex MoClo reactions have been performed using up to 6 different part 

types with as many as three part types multiplexed without decreasing efficiency. 

Library creation using multiplex MoClo could facilitate the development of fusion 

proteins with additional fusion sites used to build a CDS part from intermediates. 

The DVL0_CX, DVL0_CY, DVL0_XY, DVL0_XD and DVL0_YD vectors were 

created for this purpose and used to assemble fusion proteins comprised of three 

domains (estrogen receptor - cre recombinase - estrogen receptor, in one 

example).   

By creating a library of _CX protein coding sequences and a _XD encoded 

tag (His-tag for example) a library of tagged protein sequences can be created in 

a single assembly step. This same approach could be applied to protein 

engineering to determine the optimal residues at which to create a fusion or to 
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experiment with linker designs using the _XY part type. Mass production of 

fluorescent reporters could be assembled with the same methods.  

 

Figure 3-10 Multiplex MoClo. The modular format of MoClo allows for simple multiplexing of one 

or more part types by the addition of 1/n of the molar concentration of each part where n = the total 

number of parts of that type. (a) Basic structure of Multiplexed MoClo (MMC). (b) Assembly of a 5 

x 5 multiplex reaction in which both the promoter and RBS type part are multiplexed as seen in the 

red coded section of (c). (c) MMC of five promoters with BCD2, GFP, a standard terminator and 

DVK_AE (pJXB2Gm) provides five distinct populations of fluorescent cells. Likewise, multiplexing 

both the promoter and RBS type part results in more populations than can be accurately identified 

from fluorescence expresssion alone (pJXRBSRm).  

One of the most powerful uses of multiplex MoClo may be found in the form 

of expression tuning of complex devices. By multiplexing the promoter and RBS 
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parts of one or more TU, then using the mixed population of all TUs assembled in 

those reactions to assemble a multi-TU device, a vast array of iterative designs 

can be assembled in a single tube and screened for the desired function. When 

combined with fluorescent output signals, this expression tuning can be used in 

conjunction with fluorescence activated cell sorting to measure and isolate only 

those clones which demonstrate the desired behavior. 

3.2.6 Insulating recombinase sites within BiCistronic Designs (BCDs) 

In the interest of developing cre recombinase based memory devices, 

preliminary investigations into the ability to use BCD parts as insulators was 

investigated. A commonly used recombinase, cre and its cognate recognition 

sequence, LoxP, are well studied as genome modifying tools in transgenic mouse 

research and recombinase memory devices in synthetic biology (Orban et al. 1992, 

Friedland et al. 2009). The placement of LoxP, the cre recognition sequence, 

between promoter and RBS parts proved problematic in early designs with 

BioBrick assembly, ameliorating fluorescence expression (data not shown). The 

LoxP sequence (36 nt) was placed in frame in the short encoded peptide sequence 

of BCD parts where it would be translated, disrupting any secondary structure 

which might otherwise influence expression. New RBS type parts were made 

(BCD2lox_BC, BCD12lox_BC, etc.) which included a potentially insulated LoxP 

site (Figure 3-11).  
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An accurate measure of insulation would have required a related construct 

containing LoxP between the promoter and CDS without the use of an insulator. 

However, these designs would also invariably offer other explanations for 

sequence variance such as the sequence context surrounding the promoter or 5’ 

region of the gene. In order to accurately measure insulating effect, a wide variety 

of constructs would need to be tested to identify factors influencing expression, 

making true comparison of insulation effect on a small scale difficult.  

A small preliminary experiment was performed to assess whether 

transcription units carrying an embedded LoxP sequence expressed a fluorescent 

goi similarly to the counterpart transcription unit lacking the LoxP sequence. In five 

of the eight instances tested, transcription units with embedded LoxP sequences 

showed expression similar to that of counterpart TUs lacking LoxP. 

While this data is not conclusive, it does suggest that embedding repetitive 

or A/T rich sequences within the translated portion of the BCD may prevent 

secondary structure and minimize detrimental effects of the given sequence on 

protein expression. Further experimentation is needed to determine the full 

potential of this technique.  
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Figure 3-11 BCD parts as insulators. Devices like those shown in the top left are difficult to design 

rationally due to the inclusion of hairpin-forming recognition sequences in the transcription and 

translation control regions. LoxP was placed inside the peptide coding sequence of the BCD part 

to insulate and disrupt the hairpin structure as illustrated (middle left). (right)  In five of the eight 

instances tested, inclusion of the LoxP sequence within the BCD part resulted in similar levels of 

fluorescent protein expression similar to that of counterpart TUs lacking LoxP.  

3.2.7 CIDAR Inventory of Composable Elements (CIDAR ICE) 

The Inventory of Composable Elements (ICE) is an open source registry 

designed to assist in management of DNA part and strain information (Ham et al. 

2012). ICE was built to facilitate the creation of a web of registries, with support for 

distributed interconnected use. Currently, ICE registries have been implemented 

at multiple research facilities including Stanford University, University of California 

Berkeley, Joint Genome Institute (JGI), Harvard Medical School, Synberc (NSF 

funded synthetic biology consortium), and now Boston University (Paige 2014).  

CIDAR-ICE is a publicly available database displaying sequence and part 

information for the CIDAR MoClo Library (https://cidar-ice.org) (Figure 3-12).  
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Figure 3-12 CIDAR-ICE, publicly available parts registry. Part of the Web of Registries (JBEI-

ICE), the CIDAR-ICE registry can be found at http://cidar-ice.org. Top left: Sign in page. Top right: 

Plasmid map example. Bottom: Home screen view of plasmids available.  

 

3.3 Discussion 

3.3.1 CIDAR MoClo E. coli part library 

Four MoClo part libraries were previously available providing reusable parts 

and vectors for plant transformation constructs (Addgene, #1000000047), general 

eukaryotic multigene construct assembly (Addgene, #1000000044), mammals 

(mMoClo, (Duportet et al. 2014)) and yeast (Addgene, #1000000061). Recent 
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publications have also detailed the development of yeast Golden Gate (yGG) and 

BASIC assembly methods both of which employ a similar digestion and ligation 

reaction, though neither offer a part library to accompany the methods. To address 

the lack of publically available standardize parts for bacterial systems, we have 

constructed and characterized a library of commonly used genetic parts and the 

necessary vectors in MoClo format for use in E. coli (Addgene, #1000000059) 

(Figure 3-8 and Table A-7).  

The CIDAR MoClo part library is the first Type-IIS compatible modular part 

library available for use in bacteria.  It has already been employed by four other 

research labs by directly sharing the part library. Additionally, it is available publicly 

through Addgene along with other MoClo libraries enhancing the universality of 

this assembly standard. 

Though the chart shown in Figure 1-1 shows only sparse adoption of the 

MoClo methodology, this survey was done prior to the availability of any of these 

part libraries. With MoClo assembly methods and libraries more available and 

adapted for use in a wide variety of organisms, it is to be expected that adoption 

of MoClo methods will increase rapidly. Efforts to educate and promote the use of 

these systems would help to increase their adoption rates.  

One approach to increasing adoption of the MoClo assembly methods is to 

incorporate these methods into high school and university level biology labs, 

familiarizing more students with Type IIS assembly methods at an early point in 
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their research careers. MoClo is an ideal teaching tool for demonstrating the 

concepts of synthetic biology and modular engineering. As such, Appendix C in 

this work includes basic teaching lab materials which cover the assembly of a 

single transcription unit, multiplex MoClo assembly and analysis, and the 

construction of a two color fluorescent plasmid.  

3.3.2 MoClo assembly standard variations 

Each library uses a variant of the same format to adapt to the target 

organisms. The original Weber protocol uses five basic parts (promoter, RBS, 

signal peptide, CDS, and terminator) and a series of vectors. The CIDAR MoClo 

system was adapted from this standard with a four part format and a series of 

destination vectors. The yeast system, MoClo-YTK, uses eight primary part types 

with individual parts making up the origin and marker portion of the backbone (Lee 

et al. 2015).  The mammalian MoClo (mMoClo) standard uses six basic parts 

(insulators, promoters, 5’UTR, genes, 3’UTR, and polyA) to assemble transcription 

units or gene trap plasmids containing att sites (Duportet et al. 2014). 

Two fusion sites flank transcription units and in most MoClo formats end 

linker parts are used to enhance modularity (Weber et al. 2011). The Weber MoClo 

format rotates three antibiotics and two color selection (LacZ and CRed) whereas 

the CIDAR MoClo standard simplifies this rotation to two antibiotics and one color 

selction (LacZ). Between the Weber and CIDAR assembly standards, the _AB 

promoters and all RBS part types (_BC) are directly compatible.  
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 Weber CIDAR Plant mMoClo MoClo-YTK 

# of part types 4-6 4-6 5-8 6 8-10 

Linkers yes no yes yes yes1 

Enzymes BsaI, BpiI BsaI, BbsI BsaI, BpiI BsaI, BpiI BsaI, BsmBI 

Library #1000000044 #1000000059 #1000000047 Submitted #1000000061 

Part Fusion Sites GGAG GGAG2 GGAG GGAG CCCT 

 TACT TACT TACT TACT AACG 

 AATG AATG3 CCAT AATG TATG 

 AGGT AGGT AATG AGGT TTCT 

 GCTT GCTT4 AGGT GCTT ATCC 

 CGCT  TTCG CAAC TGGC 

   GCTT CGCT GCTG 

   GGTA  TACA 

   CGCT  GAGT 

     CCGA 

     CAAT 

     CCCT 

      
1 Linkers are termed "connectors" and flank every TU. 
2 Promoters may contain one of the following 5' fusion sites (GGAG, GCTT, CGCT, TGCC) 
3 Fusion proteins can be assembled with the addition of X (CGTT) and Y (TGTG) fusion sites. 
4 Terminators may contain one of the following 5' fusion sites (GCTT, CGCT, TGCC, ACTA)  

Table 3-1 Comparison of published MoClo standards. Though four of the published standards 

use many of the same fusion sites (highlighted), the part type associated with those sites varies 

making many of these parts incompatible.  

3.3.3 MoClo & CIDAR Workflow 

To better enable a specify-design-build-test-share workflow, the CIDAR 

workflow includes tools for each stage as described in Figure 3-13. All of these 

tools are open source and publicly available to facilitate the adoption of this 

workflow by other researchers.  
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Figure 3-13 CIDAR Workflow: Specification, design, build, test, share. In pursuit of automation, 

the CIDAR lab has developed a collection of tools. These allow for the specification of genetic 

circuits in human-readable computer language, automate assembly planning, provide libraries of 

DNA parts, analyze fluorescence data in MEFL units, and release all DNA parts and data publicly 

through the ICE database and other resources. 

Eugene is an ecosystem of human-readable languages for synthetic biology 

which facilitates the specification of biological devices (Bilitchenko et al. 2011, 

Oberortner et al. 2014, Oberortner and Densmore 2015). A methodology agnostic 

DNA assembly planner, Raven, provides human-readable and machine-

executable instructions for constructing complex DNA devices with Golden Gate, 

MoClo, Gibson, and BioBricks formats (Appleton et al. 2014). The CIDAR MoClo 

Library is part of the Hummingbird project, a collection composed of this and other 

MoClo libraries currently in development. The TASBE tools for normalizing 

fluorescence enable the comparison of experimental data between experiments 

and researchers (Beal et al. 2012).  
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3.3.4 Troubleshooting and known error modes 

In developing the CIDAR MoClo Library, alternative formats and fusion sites 

were attempted with varying degrees of success. Table 3-2 describes known 

failure modes.   

In particular, a series of fusion sites were designed to enable multi-cistronic 

assembly in the form of promoter:rbs:cds:rbs:cds: terminator and 

promoter:rbs:cds:rbs:cds:rbs:cds:terminator. Previous experiments had shown 6-

part assembly to maintain high efficiency, however, these bicistronic designs were 

unsuccessful, apparently due to the choice of fusion site. In order to continue the 

practice of containing the “ATG” start site within the 5’ CDS fusion site, the C1 and 

C2 fusion sites were designated as GATG and TATG, respectively. All attempts to 

build with these parts failed, providing few white colonies all of which were 

sequenced as artifacts. These artifacts were predominately with respect to the 

5’CDS fusion sites where the _C1D1 CDS part would fuse to the _BC part rather 

than the _DC1 part, skipping the first transcription unit and other similar incorrect 

assemblies.  

This series of experiments indicated the need for greater variance in the 

fusion site sequence in a given MoClo reaction. In general, the fusion sites used 

in the CIDAR MoClo assembly standard will differ in at least 2 of the 4 base pair 

positions with respect to all other fusion sites in a given reaction.  
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FAILED ASSEMBLY 
STRATEGY 

NAME EXPLANATION 

 

 
Multicistronic 
design 

 
C (AATG) and C1 (GATG) are too 
similar, varying by only 1 bp and allow 
for mismatch ligations. The 
A:B:C1:D1:E transcription unit was the 
most common result. Use of different 
fusion sites should enable this design. 
 

 

 

 
Palindromic 
fusion sites 

 
Palindromic fusion sites result in 
overhangs which are able to fuse to 
inverted copies of the same part rather 
than the intended downstream part, 
inhibiting correct assembly.  
 

 

 
Illegal sites 

 
Illegal sites in parts or vectors 
decrease the efficiency of a given 
reaction. The ad-hoc ‘fusion site’ made 
by an illegal restriction site may be 
palindromic, a reverse compliment of 
existing sites, or too similar to existing 
sites to allow for optimal conditions. 
Illegal sites are particularly problematic 
in Multiplex reactions when one or 
more individual parts of a multiplexed 
part type contains an illegal site.  
 

  
Reverse 
compliment 
of existing 
fusion site 

 
Fusion sites which are the reverse 
complement of an existing fusion site 
create a backward assembly step. In 
the case demonstrated here, with one 
part flanked by reverse compliment 
sequences, this creates an artifact 
whereby repeated RBS parts could 
assemble in a chainlink fashion. 
 

Table 3-2 Known failure modes. Choice of fusion sites is key for efficient and accurate MoClo 

assembly. Greater than 1 bp variance is required between sites in a given reaction. 
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3.3.5 Rational design and expression prediction with CIDAR MoClo 

Using the MEFL normalization method, plasmids made with the CIDAR 

MoClo part library have a rational expression capability with a mean square error 

of less than 2-fold. A given genetic context will express the same physical amount 

of protein regardless of the coding sequence. The BCDs in particular enable this 

rational design by reducing variation in expression due to an interaction between 

the transcription and translation elements.  

We hypothesized that the GFP and RFP data described above could be 

used to predict protein expression of a given context with any gene of interest. To 

evaluate this hypothesis, CIDAR MoClo was used to predict and build an equimolar 

dual expression plasmid, described in Chapter 4. Of the twelve candidate plasmids 

evaluated, four provided near-equal expression of two variants of a rabbit aldolase 

protein, one of which contains a 5’ His-tag. Of these, the highest co-expression 

plasmid is being further analyzed and used in downstream experiments.  

While the CIDAR MoClo standard does enable rational design, 

improvements could be made to increase modularity and consistent expression. 

The Weber and MoClo-YTK (yeast) protocols use linker or connector parts to flank 

the transcription unit and increase modularity. This has a benefit of reducing the 

number of part types required in the library for the same number of permutations. 

Additionally, this modularity further constrains expression variation by 

standardizing the sequence 5’ of the promoter region. To improve modularity in 
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this fashion with the CIDAR MoClo assembly standard, a 5th and 6th part type could 

be created which would flank the 5’ and 3’ ends to remove the need for variable 

promoter and terminator parts. Instead, all promoters would use A as a 5’ fusion 

site, further controlling expression variations, and all terminators would end in a 3’ 

E site.  

3.3.6 Applications of MoClo in traditional biological research and synthetic biology 

With interchangeable parts and the ability to multiplex assembly, MoClo has 

applications as a time and cost efficient means of library creation and propagation, 

mutagenesis screening, transcription factor characterization, protein engineering, 

and genomic engineering. In order to demonstrate this utility, in Chapter 4 we 

collaborated with a biology lab and employed CIDAR MoClo and experimental data 

from Figure 3-3 and Figure 3-4 to balance protein levels with a dual expression 

plasmid. In Chapter 5, MoClo was used to build modular sensors and cellular logic 

gates with plasmids designed to induce a change in pH upon induction. This pH 

signal can be read with affordable open-source electronic devices to create 

bioelectronic sensors and logic devices.  

3.3.7 CIDAR MoClo as an educational tool 

The simplified concept of CIDAR MoClo (two antibiotic, one color, shorter 

protocols) lends itself to an educational setting with the potential for biology 

practice lab protocols being developed to use the CIDAR parts and protocols. 
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These materials are being developed and will be available at 

http://cidarlab.org/moclo.  

3.4 Conclusions 

This work describes the construction of the first bacterial multipart modular 

DNA part library for use in bacteria and the development of optimized MoClo 

assembly protocols and standards. This library and standard lays the groundwork 

for a wide range of synthetic biology applications, greatly increasing efficiency and 

modularity in bacterial engineering. The CIDAR MoClo Library, especially when 

combined with a related design tool (Appleton et al. 2014), allows for rapid 

assembly of synthetic gene networks and cost efficient combinatorial assembly.  

The publicly available CIDAR MoClo Library is intended to provide a starting 

point for research labs to adapt for use in specific fields through the inclusion of 

new DNA parts. It is a flexible assembly standard, allowing for multiplexing, and 

the addition of new part types, new fusion sites, and the streamlined assembly of 

fusion proteins. It is also ideal for academic research and educational uses in 

teaching laboratory settings (Appendix C). 

Though formatted for cloning in E. coli, iterative design of eukaryotic circuits 

is also possible through the introduction of species specific parts. Bio-design 

automation activities are further promoted with the available Eugene design files 

that capture not only the parts in the library but also initial design guidelines and 

data (Appendix D).  
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The CIDAR MoClo Library is available through Addgene 

(www.addgene.org/cloning/moclo/densmore) and additional individual plasmids 

along with functional information and DNA sequence are publicly available through 

the CIDAR ICE Public Registry (www.cidar-ice.org). 
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4 CHAPTER 4 RATIONAL DESIGN WITH CIDAR MOCLO EQUALIZES 

PROTEIN EXPRESSION OF TWO ALDOLASE VARIANTS IN E. COLI TO 

ENABLE ISOLATION OF HETEROTETRAMERS 

4.1 Introduction 

To demonstrate the utility of the CIDAR MoClo Library, we have 

collaborated with the Tolan lab (Biology, Boston University) to tune expression of 

two variants of rabbit aldolase protein, HRA (His-tagged wildtype) and R42A (actin-

binding-deficient mutant). Aldolase, well studied for its role in glycolysis, is only 

found in nature in an unusually stable homotetramer and is known to bind F-actin 

providing a scaffold for actin crosslinking. This crosslinking of actin fibers creates 

a disordered matrix unsuitable for crystalizing, preventing characterization of the 

actin-aldolase interface. HRA:R42A tetramers in which only HRA is able to bind 

actin may enable crystallization by preventing crosslinking (Figure 1-4). Attempts 

at isolating these heterotetramers from dual expression strains have not been 

successful, due to low expression of HRA caused by the 5’ His-tag. Using the 

CIDAR MoClo library and previous expression data, a series of dual expression 

plasmids were created and evaluated. Of these, two show equal expression of 

each aldolase variant by western blot analysis and are being applied to 

crystallization studies.  

We tested the predictive engineering capability of the CIDAR MoClo system 

by producing a dual expression plasmid with two variants of the rabbit aldolase 
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protein expressed constitutively in equal quantities to enable the isolation of 

heterotetramers. These heterotetramers, dimers of dimers, will be used for 

electron microscopy to characterize actin-aldolase binding.   

4.2 Results 

4.2.1 Predictive design of aldolase Transcription Units 

Using the data gathered in Chapter 3 on GFP and RFP expression (Figure 

3-3c, Figure 3-4, Figure 3-5 and Appendix A) as a reference, a small number of 

promoter:RBS combinations were chosen which were predicted to express a goi 

in similar molar quantities. Single expression units for each aldolase variant were 

created, sequence verified, and assembled into dual expression plasmids for the 

isolation of heterotetramers (Figure 4-1).  

Five contexts were chosen for high equimolar expression of R42A and HRA 

in E. coli, J06B12X_AE, J07B2X_AE, J07B12X_AE, J02B2X_EF, and 

J02B12X_EF. The _EF vector context tends to have lower expression of a given 

transcription unit compared to the same construct in an _AE vector. As expression 

in the _EF transcription unit is the limiting factor for _AF dual expression devices, 

the highest expression contexts in _EF which showed consistency in previous data 

were chosen to enable the highest overall expression levels. Three _AE constructs 

were chosen to match these _EF plasmids in expected expression.  
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Figure 4-1 Plasmid design for aldolase dual expression devices. HRA transcription units are 

pJ06B12HRA_AE(K), pJ07B2HRA_AE(K), pJ07B12HRA_AE(K), pJ02B2HRA_EF(K), 

pJ02B12HRA_EF(K) and designated Tolan-1 through Tolan-5 respectively. The HRA transcription 

units are pJ06B12R42A_AE(K), pJ07B2R42A_AE(K), pJ07B12R42A_AE(K), 

pJ02B2R42A_EF(K), pJ02B12R42A_EF(K) and nicknamed Tolan-6 through Tolan-10 

respectively. The _AE(K) plasmids will be the first transcription unit in each dual expression 

cassette while the _EF(K) plasmids fill the second position. Each combination of pJXBXHRA_AE 

and pJXBXR42A_EF were combined to create the dual expression cassettes expressing HRA 

upstream of R42A. Likewise, each combination of pJXBXR42A_AE and pJXBXHRA_EF were also 

created for a combined total of twelve _AF(A) duel expression plasmids. 

J23102 is consistently the highest strength promoter in the CIDAR MoClo 

library. Likewise, BCD2 and BCD12 have been shown to be the strongest RBS 

parts in the library with BCD2 the stronger of the two by a small margin. The 
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pJ02B2X_EF and pJ02B12X_EF fluorescent reporters produced RFP and GFP in 

similar quantities (Table 4-1).  

Context GFP RFP 

pJ06B12X_AE(K)   7764 ± 420 11165 ± 1112 
pJ07B2X_AE(K)   7400 ± 404   8331 ± 981 
pJ07B12X_AE(K)   8363 ± 159 17987 ± 837 
pJ02B2X_EF(K)   5656 ± 248 13402 ± 1284 
pJ02B12X_EF(K)   5924 ± 55 11530 ± 73 
Average for goi   7021 ± 1179 12483 ± 3572 
   
   
pJ02B2X_AE(K) 29470 ± 2559 50955 ± 2861 
pJ142mX_AE(K)     194 ± 10     178 ± 7 

All values noted as MEFL units of the geometric mean  
± standard deviation measured by flow cytometry.  
 
pJ02B2X_AE(K) and pJ142mX_AE(K) are shown here 
to demonstrate the range of expression 
 

Table 4-1 Fluorescent protein expression data for each genetic context used in aldolase 

tuning. This data was used to model expression of aldolase expression plasmids.  

4.2.2 Protein expression analysis of dual expression plasmids 

HRA_CD and R42A_CD parts were cloned by PCR using template provided 

by the Tolan lab. Transcription units composed as described above were 

assembled with standard CIDAR MoClo protocols in DVK_AE and DVK_EF 

vectors. Upon sequence verification these were further compiled into dual 

expression plasmids (Tolan 1-9, Tolan 1-10, etc. as described in Figure 4-1) in 

DVA_AF vectors. Sequence verified dual expression plasmids were provided to 

the Tolan lab for expression analysis. 

Due to the high degree of similarity between HRA and R42A, accurate 

quantification of each variant in a dual expression system is difficult. Previous data 

(Figure 3-5a) of fluorescent protein reporters suggests expression of a given 
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transcription unit when expressed alone or in a dual expression vector is 

unchanged as long as the same backbone is used. To provide an option for a proxy 

measurement of protein expression in single gene cassettes, individual 

transcription units were subcloned from the standard DVK_AE and DVK_EF 

vectors into DVA_AE and DVA_EF vectors respectively to produce Tolan-1(A) 

through Tolan-10(A).  

Western blots with α-His antibody which recognize HRA but not R42A show 

high levels of HRA expression in all dual expression plasmids (Figure 4-2a) when 

compared to the control. Increasing HRA expression is the first step to creating 

equal dual expression plasmids. Importantly, expression of HRA appears fairly 

consistent between pairs of plasmids containing the same HRA transcription units 

(2-9 and 2-10, 6-5 and 7-5 for example). This same antibody used with single 

expression DVA plasmids showed less consistent expression, contrary to 

expectation, with Tolan-4(A) demonstrating the highest level of expression (Figure 

4-2b). This inconsistency may be due in part to signal saturation in Figure 4-2a.  
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Figure 4-2 Western blots of aldolase protein expression. (a) α-His antibody, expression of HRA 

in each of the dual expression clones is higher than the control demonstrating an improvement 

upon the previous plasmid design. Additionally, pairs of plasmids containing identical HRA TUs 

show similar expression (2-9 and 2-10, 3-9 and 3-10, 6-5 and 7-5), consistent with the fluorescent 

data for these genetic contexts. (b) Expression of HRA in the single TU DVA plasmids show less 

consistent expression of individual TUs with Tolan-4A showing the highest expression of HRA. 

Western blots were performed by Quinn Ho, Tolan Lab. 

Westerns performed on dual expression plasmids using anti-aldolase 

antibodies identify both aldolase variants resulting in doublet bands. Though faint, 

multiple samples appear to have approximately equal expression of HRA and 

R42A when probed with α-aldolase antibody, namely 3-9, 6-4, and 6-5 (Figure 

4-3a). A second western performed with α-aldolase A antibody replicates these 

results with 6-4 and 6-5 showing the highest levels of expression for each variant 

in approximately equal quantity (Figure 4-3b).  
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Figure 4-3 Expression analysis of aldolase HRA and R42A. (a) α-aldolase antibody binds to 

both HRA and R42A presenting a doublet. Bands are faint, yet a few samples appear to contain 

approximately equal quantities of HRA and R42A (3-9, 6-4, 6-5, 7-4). (b) A second α-aldolase 

antibody, α-aldolase A, shows similar results with clearer bands. Of these, 6-4 and 6-5 appear to 

have the highest expression while presenting approximately equal signals for both variants. 

Western blots were performed by Quinn Ho, Tolan Lab. 

4.2.3 GFP and RFP fusion proteins as proxy expression measurements 

A recent publication (Mutalik et al. 2013a) demonstrated the effect of 

various 5’ coding sequences on protein expression by creating fusion proteins 

carrying the 5' 36-nt of a given gene fused to the 5’ end of GFP or RFP under the 

control of a standard promoter and a series of ribosome binding sites. From this 

we hypothesized that fusion proteins carrying the 5’ 36-nt of each aldolase variant 

could substitute as proxy measurements for expression levels of HRA and R42A 

in non-fusion plasmids. This information could inform on the expression patterns 

of the dual expression plasmids previously created as Figure 3-5 demonstrated 

the consistency of expression in a given context when assembled into a multi-TU 

device.  
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Fluorescent fusion proteins of HRA:GFP, HRA:RFP, R42A:GFP and 

R42A:RFP were created to match Tolan-1 through Tolan-10 in terms of promoter, 

RBS and vector context. These were grown overnight along with the same 

contexts with GFP and RFP coding sequences for comparison (pJ06B12X_AE(K), 

etc. as described in Figure 4-1). Fluorescence of each clone was measured in 

triplicate with a Tecan plate reader.  

As the BCD elements are designed to minimize variation in expression due 

to RBS:CDS interaction, it was expected that expression of a given context would 

remain fairly constant with the change of goi between GFP, HRA:GFP and 

R42A:GFP or between RFP, HRA:RFP, and R42A:RFP. However, it appears the 

5’ His-tag in HRA:GFP and HRA:RFP has more influence on gene expression than 

can be ameliorated with the BCDs.  
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Figure 4-4 Fluorescence data of aldolase proxy plasmids. Evaluating fluorescent protein fusion 

proteins as a proxy measurement of HRA and R42A expression. Error ranges are too narrow to be 

visible at this scale.  

This fluorescence analysis does appear to correlate with the western data 

presented in Figure 4-2 and Figure 4-3, with HRA fusions fluorescing at notably 

lower levels (variance of 11.83-fold between R42A:GFP and HRA:GFP units). RFP 

comparisons are more closely related with an average variance of 2.47-fold 

between R42A:RFP and HRA:RFP. Overall, while some information can be 

discerned from the fusion proteins, the reliability of this method as a means of 

evaluation expression of a native protein is uncertain.  
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Considering that the BCDs have been shown previously to reduce variance 

10-fold (Mutalik et al. 2013a), this suggests that expression of HRA without the 

influence of a BCD could be as much as 40-fold less than the R42A equivilant. 

With a BCD present the average variance between HRA:GFP and GFP TUs = 

4.40-fold; variance between HRA:RFP and RFP TUs = 1.74-fold.  

4.3 Discussion 

4.3.1 Balanced expression of both aldolase variants in a single plasmid 

While a more exhaustive approach could be employed in tuning expression 

in a system like the one demonstrated in this chapter, it does appear that we have 

succeeded at engineering equimolar expression within approximately a 2-fold error 

(estimated from western data) in 4 of the 12 dual expression plasmids created. 

Further quantification is pending optimization of protein separation methods. The 

strongest of these (Tolan-6-4 and Tolan-6-5) are currently being applied to 

structural analysis of the aldolase-actin binding interface.  

The concept behind using fusion proteins as proxy measurements has 

some merit, however more analysis is needed. For example, data shown in Figure 

4-4 was gathered with a plate reader and represents population readings. Flow 

cytometry data of these cells may indicate multiple distinct populations within a 

single culture that could skew mean fluorescence values in a combined population. 

Additionally, more analysis could be performed to determine the length of the 5’ 
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sequence that provides the most accurate representation of expression with the 

native CDS. 

4.3.2 Limiting factors 

The influence of the fusion site choice on expression created an upper limit 

of expression available for dual expression plasmids as even the highest strength 

combination of promoter and RBS in an _EF(K) vector would be approximately 3-

fold weaker than the counterpart _AE(K) vector. Adaptation of the CIDAR MoClo 

assembly standard to include outside linkers or connectors as described for other 

MoClo standards could solve this limitation. Addition of linkers would allow for the 

standardization of the fusion sites directly flanking the transcription unit and 

facilitate the use of the same strong fusion site context with both TUs. 

4.3.3 Alternative design strategies 

The His-tag is a necessary component of downstream experiments 

regarding the isolated aldolase heterotetramers. However, it is likely unnecessary 

for the His-tag to be fused to the 5’ end of the coding sequence rather than the 3’ 

end where it would have less influence on gene expression (Goodman et al. 2013). 

Other tags may provide similar functions and have less influence on protein 

expression.  

Inducible, rather than constitutive, expression also offers an alternative 

approach by which an inducer molecule could be used to control the expression of 

each variant. This approach would minimize the number of genetic designs 
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required and may reduce stress upon the cells caused by constitutive high 

expression of foreign proteins. However, careful control of induction protocols 

would be required and results may not be as consistent as with constitutive 

expression plasmids.   

Another alternative may be to engineer a dimer-of-dimer fusion protein in 

which R42A and HRA are encoded as a single coding sequence, a fusion protein, 

to facilitate 2:2 ratios in heterotetramer formation. The choice of linker domains 

between the subunits would be critical, and other stochastic or structural issues 

may arise from the forced ratio. Such alternatives should be considered, however, 

if this dual expression plasmid and isolation of the correct heterotetramers proves 

to be unfruitful.  

4.4 Conclusions 

In summary, in Chapter 4 we have successfully tuned the expression of two 

variants of a rabbit aldolase protein by selecting genetic contexts based on 

previous expression data. Of the twelve dual expression plasmids examined, four 

appear to have approximately equal expression of both variants for a success rate 

of 33% in terms of balancing expression. Of these, two demonstrate both equal 

and high levels of protein expression (Tolan-6-4 and Tolan-6-5). These are 

undergoing further quantitative analysis and being applied to protein electron 

microscopy experiments to decorate F-actin and determine the actin-aldolase 

binding interface.  
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5 CHAPTER 5 DEVELOPMENT OF BACTERIAL BIOELECTRONIC LOGIC 

GATES WITH pH AND FLUORESCENCE AS OUTPUT SIGNALS 

5.1  Introduction 

A modular DNA assembly system lays the groundwork for a wide variety of 

applications from cell-free expression of combinatorial designs to rapid prototyping 

of bioelectronic sensors. Here we used CIDAR MoClo assembly to create plasmids 

containing DNA circuits which utilize a sugar input and a pH change as an output 

signal. Hydrolysis of lactose by beta-galactosidase reduces pH through the release 

of a hydrogen ion when breaking the bond between a galactose and glucose 

molecule.  

Induction of LacZα expression decreases pH as measured by an Atlas 

Scientific pH probe. pH data is recorded by a Raspberry Pi processor. A change 

in pH can be used as a signaling mechanism to integrate biological inputs into 

digital outputs. Multiple pH probes attached to Raspberry Pi processors facilitate 

the development of bioelectronic Boolean logic gates based on previously 

published genetic designs (Tamsir et al. 2011).  
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Figure 5-1 pH Experiment Schematic. Inducer in the media turns on LacZα, expressing beta-

galactosidase enzyme which metabolizes lactose resulting in an increase of hydrogen ions.  This 

reduction in pH is measured with an Atlas Scientific pH probe attached to a Raspberry Pi. The 

Raspberry Pi reports pH every three seconds until a predetermined threshold is reached. Upon 

reaching threshold, a signal is sent via the Twitter API and a tweet is posted online. This tweet 

triggers the next stage when the signal is received by another Raspberry Pi which controls a 3D 

printed syringe pump calibrated to inject 100 µL of a second inducer molecule into inducible YFP 

expression cells.  

5.2 Results 

5.2.1 Induction of LacZ mediated pH change 

Two plasmids were evaluated as inducible pH circuits, 

pBADLacZDV:J024mAraC_AF(A) and pR10mLacZDV_AE(K) (Figure 5-2). To 
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evaluate the ability to measure a distinct change in pH with lactose induction, a 

dosage response curve was done using pR10LacZDV_AE(K), a modularly 

assembled form of the DVK_AE destination vector. This plasmid contains an 

interchangeable promoter (R0010_AB, pLac) and combined RBS, CDS, and 

terminator LacZDV_BE. This modularity allows for the simple creation of multiple 

LacZ induction plasmids by varying the promoter part.  

 

Figure 5-2 LacZ under the control of pBAD and AraC (above) and R0010m (below). Top: 

pBADLacZDV:J024mAraC_AF(A). Bottom: pR10mLacZDV_AE(K) These constructs allow for 

inducible pH reduction. 

In Figure 5-3, DH5α cells were grown overnight in the presence of lactose 

and pH was measured at 14 hours. Under these conditions, a significant change 

in pH was seen with induction of 50 µM lactose (Figure 5-3) with 
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pR10LacZDV_AE(K) in DH5α cells. As this appears to be a saturating 

concentration, an induction curve was performed to determine whether a lower 

dose would suffice. The resulting curved showing saturation between 25 and 50 

mM (data not shown); therefore a 50 mM induction concentration was used for the 

next round of experiments.  

In order to mimic the logic gates presented in by the Voigt lab (Tamsir et al. 

2011), we transformed the plasmids into TOP10 cells, a DH10B strain. The 

previous experiment was then replicated with pR10m controlling LacZ expression 

as a control and pBAD with arabinose induction as a new circuit (Figure 5-2). This 

data failed to replicate the results (Figure 5-4), with 50 mM of lactose failing to 

decrease pH with pR10m as drastically as seen previously. Additionally, 

expression of LacZα under the control of pBAD and AraC demonstrates a dramatic 

change in pH in the presence of arabinose alone.    
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Figure 5-3 Induction of pH change using lactose and pLac promoter driving LacZa in DH5a 

cells. pR10mLacZDV_AE(K) differs only slightly from pR10LacZDV_AE(K), containing additional 

basepairs to match the DVK_AE sequence. Cells grown overnight (14h) in the presence of lactose.  
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Figure 5-4 pH response with pBAD controlled LacZ expression. DH10B cells were grown 

overnight (14h) in the presence of lactose. pBAD controlled LacZ expression shows pH change in 

response to arabinose alone. Additionally, R10m controlled LacZ expression fails to induce a 

substantial shift in pH with a 50 mM lactose concentration as seen in DH5α cells.     

pH change of the R0010m control is much less substantial in Figure 5-4 

than is seen in DH5α cells. In an attempt to recreate the dramatic pH difference 

between controls and experimental cells, a second induction curve was performed 

with 0, 50, and 150 mM lactose (Figure 5-5). pR10m cells displayed a significant 

change in pH upon induction with 150 mM lactose (p < 0.001). Having recalibrated 

induction for DH10B cells, 150 mM or 200 mM was used in experiments going 

forward.  



 

94 
 

 

Figure 5-5 Lactose induction curve in DH10B cells. Consistent with Figure 5-4, lactose induction 

appears to be less efficient in DH10B cells, requiring doses of 150 mM or 200 mM (not shown here) 

for substantial decrease in pH.  

All pH experiments to this point were performed as endpoint analyses. To 

determine the effects of incubation time, further induction experiments were 

conducted with pH measured at intervals (Figure 5-6). Cells expressing LacZ 

under the control of pBAD were incubated with or without 0.1% arabinose and 150 

mM lactose. A reduced concentration of arabinose was used in an attempt to 

prevent arabinose mediated pH change. At 7.5 hours, a difference in pH can be 

seen between cells treated with arabinose (pH = 6.67) and those treated with 

arabinose and lactose (pH = 6.00). By tuning LacZ expression in this time course, 

we were able to define the parameters under which pBAD induced LacZα could be 

used as a logic gate component.  
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Figure 5-6 pBAD mediated pH change time course. In order to optimize pBAD mediated pH 

change a time course was performed to observe pH at various intervals. Shorter incubations appear 

to provide a window in which pH is substantially different in in the presence of lactose and arabinose 

when compared to either arabinose alone or no sugar inputs.  

To optimize the induction and pH component of a bioelectronic logic gate, 

we wished to reduce the time required for signal acquisition. To do this, cells were 

grown overnight without inducer or lactose and diluted 1:2 into fresh culture tubes. 

These tubes were then induced and grown for three hours. This three hour protocol 

was sufficient to generate a pH change in R0010m controlled LacZ expression 

cells (p < 0.01) and in pBAD controlled cells (p < 0.01) despite the background 

caused by high arabinose concentration.  
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Figure 5-7 Three hour pH induction protocol. This rapid protocol decreases the time required 

for signal acquisition by decreasing pH in R0010m controlled cells from 7.65 to 6.14 (p < 0.05). 

This experiment was run concurrently with Figure 5-6, using a 1% arabinose induction which is 

seen here to decrease pH in the absence of lactose. Lower concentration is used in the final 

experiment.  

5.2.2 pH mediated induction of Yellow fluorescent protein (YFP) 

A YFP expression plasmid was acquired from the Voigt lab in order to 

closely replicate the logic gates described in Tamir et. al (2011). pOR30, shown in 

Figure 1-5, expresses YFP in the presence of homoserine lactone (HSL) under 

the control of the pLas promoter. Having tuned the expression of the pR10m and 
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pBAD controlled LacZ expression plasmids in the previous experiments, these two 

plasmids were used as the basis of a bioelectronic OR gate.  

An induction curve was performed to determine the concentration of HSL 

necessary to rapidly induce YFP expression in DH10B cells carrying the pOR30 

plasmid. Doses of 10 and 100 mM were analyzed with flow cytometry at 30’ 

intervals from t=0 to t=180. A concentration of __ was selected as an optimal 

induction solution.  

5.2.3 Cellular logic with sugar input, pH intermediate and fluorescent output 

A culture tube containing 200 mM lactose in LB (1 mL) was inoculated with 

500 µL of either pR10mLacZ and or pBADLacZ from an overnight culture. The 

pBADLacZ sample was also induced with 0.1% arabinose. pH probes wired to 

independent Raspberry Pi processors were inserted into each tube. The tubes 

were placed into a shaking incubator and pH was reported every three seconds.  

A 96 well plate containing only controls and one sample well (uninduced 

pOR30 cells in LB) was prepared and the wells covered with breathable film. HSL 

was loaded into the syringe which was placed into the 3D printed syringe pump 

calibrated to inject 100 µL (± 4 µL) at a time. This syringe pump was attached to a 

third Raspberry Pi programmed to monitor the @Tweecoli Twitter account for a 

post reading “True” for a pH change in either culture when pH reached a predefined 

threshold (pH of 5.5).  
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Upon either culture reaching a pH of 5.5, a tweet would be posted live online 

stating either “Lac True at <Date> <Time>” or “Ara True at <Date> <Time>”, 

respectively. Either of these posts would be accepted by the third Raspberry Pi as 

a signal to activate the servo motor in the syringe pump and inject 100 µL of HSL 

into a well containing uninduced cells.  

 

Figure 5-8 pH mediated logic gate with YFP expression output. (a) pH at 30 minute intervals 

of cultures containing DH10B cells with pBADLacZ:J06B2AraC_AF(A) plasmid, induced with 

arabinose (described in Figure 5-2) in media containing 200 mM lactose (blue) and DH10B cells 

with pR10mLacZ_AE(K) plasmid induced with 200 mM lactose alone (red). When pH of either 

sample falls below 5.5, a Tweet is posted via the Twitter API which functions as a trigger for a 

second Raspberry Pi which mediates induction of a fluorescent reporter by controlling the motor 

embedded in a 3D printed syringe pump containing inducer.  (b-e) Fluorescence measurement of 

control and experimental samples from 96 well plate with HSL induction pump demonstrating 

induction of specified well with 2 h. incubation at 37C 900 rpm – (b) DH10B cells, no plasmid, - 

HSL. (c) DH10B cells, no plasmid, + HSL. (d) DH10B cells, pOR30 plasmid, - HSL. (e) DH10B 

cells, pOR30 plasmid, + HSL. 
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Figure 5-8 demonstrates a functioning bioelectronic logic gate in which a 

biological input (sugar) is measured via a pH change and transmitted as a digital 

output (Twitter) which in turn triggers a mechanical input mechanism (HSL 

injection) inducing YFP expression as a biological output. This experiment was 

designed to mimic a previously published logic gate (Tamsir et al. 2011) to 

demonstrate the utility of MoClo in the development of bioelectronic cellular logic. 

While this proof of concept experiment is relatively simple, it lays the groundwork 

for more complex forays into bioelectronic engineering.  

5.2.4 CNC milled 96-well plate adaptions for customized cellular growth and 

analysis experimentation 

Computer numerical control (CNC) milling offers a wide range of 

applications in synthetic biology.  In order to lay basic groundwork for ongoing 

development of CNC milled devices in the CIDAR lab, we have performed 

preliminary analysis of growth and fluorescence measurement capabilities in 

polycarbonate devices (Figure 5-9). Cells grown overnight in 100 µL of LB in this 

5x5 PCA well array had an OD600 of 0.7 and showed normal fluorescence 

patterns with only pJ02B2Rm_AE(K) registering on the red channel and both 

pJ02B2Rm_AE(K) and pJ02B2Gm_AE(K) registering on the green channel with 

the red expression cells showing normal autofluorescence.  
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Figure 5-9 CNC milled 96-well plate adaptation for customized cellular growth and analysis 

experimentation. Polycarbonate plastic (PCA) can be milled to specification for a wide range of 

purposes. (a) Proof of concept 3D printed 96-well plate frame designed to hold a CNC milled 5x5 

well array to evaluate growth and fluorescence measurements in PCA. OD600 ~ 0.80 after 12 hours 

growth at 37°C 900 rpm. (b) RFP fluorescence was measured on a plate reader with excitation at 

580 nm and emission at 635 nm. (c) GFP fluorescence was measured at 485/535 nm and shows 

some background fluorescence as is common with FITC channel measurements of live cells.  
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5.3 Discussion 

We have successfully built and tested a bioelectronic OR gate with pBAD 

and R0010m mediated LacZ expression vectors. This demonstration provides the 

basis for the development of more complex and more physically compact devices. 

Additionally, preliminary experiments show normal cellular growth and 

fluorescence measurement ability in PCA milled devices.  

 A pLac promoter, R0010m, reliably controls pH of DH5α and DH10B cells 

through expression of LacZα and induction with lactose (50 mM in DH5α, 150-200 

mM in DH10B). pBAD mediated expression of LacZα is more intricate, requiring 

careful moderation of arabinose concentration to avoid triggering a pH change with 

arabinose alone. Induction of cells carrying the pBADLacZDV:J024mC80_AF(A) 

to create a substantial pH change was performed with a 0.1% concentration of 

arabinose and 200 mM concentration of lactose with a peak variance in pH seen 

at or before 7.5 hours.  

pTetLacZDV:J024mC40_AF(A) was also evaluated as an inducible pH 

circuit. This design proved to be even less responsive to inducer than the pBAD 

mediated device. A schematic of this circuit (Figure B-3) and time course induction 

data (Figure B-4) can be found in Appendix B.2. 

Though a previously published biosensor has demonstrated this LacZ-pH 

signaling mechanism (de Mora et al. 2011) the pH induction plasmids evaluated 

here indicate a high amount of noise in biological systems with relation to pH. 
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Growth, optical density, and other metabolic pathways influence pH as seen with 

the data in this chapter in which pH of uninduced cultures shifts over time and 

arabinose alone triggers a change in pH. Though pH may be a viable bioelectronic 

interface signal, other interface methods should also be considered moving 

forward.  

Polycarbonate plastic (PCA) can be milled to specification for a wide range 

of purposes and was shown here to be a viable option for containment of cells 

during growth and fluorescence analysis. Thickness of the bottom surface through 

which OD and fluorescence measurements were made was kept standard at 3 

mm. Under the conditions reporter here, growth and fluorescence measurement 

appear normal compared to using standard 96 well plates.  

RFP fluorescence was measured on a plate reader with excitation at 580 

nm and emission at 635 nm. GFP fluorescence was measured at 485/535 nm and 

shows some background fluorescence as is common with FITC channel 

measurements of live cells. In both cases readings were taken from the bottom of 

the plate and a gain of 87 (red) and 89 (green) was used as determined by the 

“optimal gain” option on the Tecan plate reader.  

The applications of 3D printed and CNC milled custom devices in biological 

sciences is infinite, with potential uses including small tools like the syringe pump 

and milled microfluidics as well as larger scale applications in bioproduction and 

metabolic engineering. By producing micromilled devices designed to fit within a 
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96 well plate frame as shown in Figure 5-9 many measurement and analysis tools 

are readily adaptable to custom formats. For example, centrifugal fluidic devices 

which work by spinning a flat plastic disc to move liquid through channels, can be 

cut to fit within a 96 well plate with “output” wells aligned for use in a plate reader 

or other 96-well compatible equipment. Further research into such practices is 

ongoing in the CIDAR lab.   

5.4 Conclusions  

Though a previously published biosensor has demonstrated this LacZ-pH 

signaling mechanism (de Mora et al. 2011) the pH induction plasmids evaluated 

here indicate a high amount of noise in biological systems with relation to pH. 

Growth, optical density, and other metabolic pathways influence pH as seen with 

the data in this chapter in which pH of uninduced cultures shifts over time and 

arabinose alone triggers a change in pH. Though pH may be a viable bioelectronic 

interface signal, other interface methods should also be considered moving 

forward.  

CNC milled devices have the potential to be infinitely advantageous in the 

development of custom bioelectronic circuits, micromilled microfluidics, and other 

areas of research under the umbrella of synthetic biology. Preliminary analysis 

here demonstrates the ability to use PCA as a chamber for growing cells and 

measuring fluorescence on red and green channels. Further analysis is needed to 

determine the effects of polishing rough surfaces, movement of cell cultures 
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through milled channels, and the ability to measure other fluorescence in other 

wavelengths.  

These bioelectronic sensor experiments, paired with the aldolase 

expression tuning experiments described in Chapter 4 demonstrate the utility of 

CIDAR MoClo in both synthetic and traditional biology research. The CIDAR 

MoClo Library is the first bacterial multipart modular DNA library available. It is the 

hope of the author that these materials allow for the wider adoption of MoClo as a 

research and educational tool.  
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Appendix A – Additional MoClo data 

A.1 MoClo protocol optimization 

In order to determine the optimal buffer and ligase for use with MoClo, an 

array of components was compared. This data represents one transformation 

reaction per line and was used as a preliminary assessment. Zymo cells are 

chemically competent cells produced in house from the Bioline Alpha Select DH5α 

strain. While the Zymo protocol is intended to produce extremely high competent 

cells and negate the need for heat shocking and recovery, this rapid transformation 

protocol works only for isolated plasmids. Both Bioline and Zymo cells were used 

with a standard heat shock protocol as described in Chapter 2. 

Construct Buffer Ligase Cells White Blue % White 

pJ00B2Rm_EF Promega Promega Bioline 118 24 83% 

4 part NEB NEB Bioline 260 50 84% 

  Promega NEB Bioline 740 40 95% 

  NEB+BSA NEB Bioline 374 0 100% 

  Promega Promega Zymo 458 58 89% 

  NEB NEB Zymo 230 42 85% 

  Promega NEB Zymo 164 10 94% 

  NEB+BSA NEB Zymo 208 110 65% 

pJ00B2CAM_EF Promega Promega Zymo 172 2 99% 

4 part NEB NEB Zymo 224 38 85% 

 Promega NEB Zymo 88 28 76% 

  NEB+BSA NEB Zymo 30 5 86% 

pJ00ERCreER_EF Promega Promega Zymo 166 28 86% 

6 part NEB NEB Zymo 66 14 83% 

 Promega NEB Zymo 60 20 75% 

  NEB+BSA NEB Zymo 40 46 47% 

       

Table A-1 Preliminary optimization of MoClo protocols. Initial steps compared NEB 

and Promega ligase reagents and competent cell type. 
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Figure A-1 MoClo cycle and volume optimizations. BMC = basic MoClo, standard assembly 

protocol, 4 part transcription unit. 10 µL reactions with 0.5 µL of restriction enzyme and 25 cycles 

resulted in the highest level of consistent assembly efficiency. Lower enzyme concentration and 

fewer cycles still results in sufficient correct clones despite lowered efficiency.  
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CIDAR MoClo Protocols   

 Step Temp 
Time 
(min)  Reaction Conditions 

Standard Step 1 37°C 1.5  
Basic Part or Device  
(DVA Reactions) 

 Step 2 16°C 3  10 fmol each part 

 Cycle 1-2 x15    1x Promega Ligase buffer 

 Step 3 50°C 5  20 U/rxn T4 Ligase 

 Step 4 80°C 10  10 U/rxn BbsI 

 Total time 82.5   Total Volume: 10 -20uL 

      

     
Transcriptional Unit  
(DVK Reactions) 

Troubleshooting  Step 1 37°C 1.5  10 fmol each part 

 Step 2 16°C 3  1x Promega Ligase buffer 

 Cycle 1-2 x25    20 U/rxn T4 Ligase  

 Step 3 50°C 5  10 U/rxn BsaI 

 Step 4 80°C 10  Total Volume: 10 -20uL 

 Total time 127.5   

     Transform 2-5 uL per reaction 

     Either NEB or Promega Ligase 

Rapid Step 1 37°C 20   

 Step 2 37°C 1.5   

For new basic parts Step 3 16°C 3   

 Cycle 2-3 x5-10     

 Step 4 50°C 5   

 Step 5 80°C 10   

 Total time 37.5-60   

 

Table A-2 CIDAR MoClo Protocols as published in ACS Synth Biol 2015. 
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Fusion site choice is crucial for maintaining high efficiency with MoClo. 

Table A-3 acts as a guide for designating new sites. Assigned sites are indicated 

in green with the reverse complement of these sites highlighted orange. Pink 

sequences have only a 1 base pair variation from one or more previously 

designated fusion sites and may cause a decrease in efficiency if used with these 

sites. Red sequences are either repetitive or palindromic and should be avoided 

at all times.  

A.2 Primers for CIDAR MoClo parts and vectors 

Primer Sequence 

Part Forward 5'ATGAAGACGTnnnn-20nt- 

Part Reverse 5'ACGAAGACCTnnnn-20nt- 

  

DV0/DV2/DVA 
Forward 

5'GTACTAGTGGGTCTCAnnnnATGTCTTCtgcaccatatgcggt 

DV0/DV2/DVA 
Reverse 

5'CTACTAGTAGGTCTCTnnnnACGTCTTCcccgcgcgttggccgat 

  

DV1/DVK 
Forward 

5'GTACTAGTGGAAGACATnnnnAGAGACCtgcaccatatgcggtgtgaaatac 

DV1/DVK 
Reverse 

5'CTACTAGTAGAAGACATnnnnAGAGACCcccgcgcgttggccgattcattaa 

   

 Table A-4 Primer design strategy for new basic parts and vectors. At least 20 

nucleotides of annealing part sequence is suggested for creation of new basic parts. 

CDS annealing sequence begins with the second codon as the “ATG” codon is included 

in the C fusion site. Sequences are color coded; red = BbsI, blue = BsaI, grey = SpeI, 

green ‘nnnn’ = fusion site in forward orientation, brown ‘nnnn’ = reverse compliment of 

fusion site.  

 

A.3 Parts for 3Ab CIDAR MoClo part collection (initial) 

Vector Level Antibiotic 5' Flanking Region (5' to 3') 3' Flanking Region (5' to 3') 

DVL0_AB 0 CAM GGTCTCAGGAGATGTCTTC GAAGACGTTACTAGAGACC 
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Vector Level Antibiotic 5' Flanking Region (5' to 3') 3' Flanking Region (5' to 3') 
DVL0_BC 0 CAM GGTCTCATACTATGTCTTC GAAGACGTAATGAGAGACC 

DVL0_CB 0 CAM GGTCTCAAATGATGTCTTC GAAGACGTTACTAGAGACC 

DVL0_CD 0 CAM GGTCTCAAATGATGTCTTC GAAGACGTAGGTAGAGACC 

DVL0_CI 0 CAM GGTCTCAAATGATGTCTTC GAAGACGTTCTAAGAGACC 

DVL0_CX 0 CAM GGTCTCAAATGATGTCTTC GAAGACGTCGTTAGAGACC 

DVL0_CY 0 CAM GGTCTCAAATGATGTCTTC GAAGACGTTGTGAGAGACC 

DVL0_D1E 0 CAM GGTCTCAGTTCATGTCTTC GAAGACGTGCTTAGAGACC 

DVL0_DC1 0 CAM GGTCTCAAGGTATGTCTTC GAAGACGTGATGAGAGACC 

DVL0_DC2 0 CAM GGTCTCAAGGTATGTCTTC GAAGACGTTATGAGAGACC 

DVL0_DE 0 CAM GGTCTCAAGGTATGTCTTC GAAGACGTGCTTAGAGACC 

DVL0_DF 0 CAM GGTCTCAAGGTATGTCTTC GAAGACGTCGCTAGAGACC 

DVL0_DG 0 CAM GGTCTCAAGGTATGTCTTC GAAGACGTTGCCAGAGACC 

DVL0_DH 0 CAM GGTCTCAAGGTATGTCTTC GAAGACGTACTAAGAGACC 

DVL0_EB 0 CAM GGTCTCAGCTTATGTCTTC GAAGACGTTACTAGAGACC 

DVL0_FB 0 CAM GGTCTCACGCTATGTCTTC GAAGACGTTACTAGAGACC 

DVL0_GB 0 CAM GGTCTCATGCCATGTCTTC GAAGACGTTACTAGAGACC 

DVL0_ID 0 CAM GGTCTCATCTAATGTCTTC GAAGACGTAGGTAGAGACC 

DVL0_XD 0 CAM GGTCTCACGTTATGTCTTC GAAGACGTAGGTAGAGACC 

DVL0_XY 0 CAM GGTCTCACGTTATGTCTTC GAAGACGTTGTGAGAGACC 

DVL0_YD 0 CAM GGTCTCATGTGATGTCTTC GAAGACGTAGGTAGAGACC 

       
DVL1_AE 1 KAN GAAGACATGGAGAGAGACC GGTCTCTGCTTATGTCTTC 

DVL1_EF 1 KAN GAAGACATGCTTAGAGACC GGTCTCTCGCTATGTCTTC 

DVL1_FG 1 KAN GAAGACATCGCTAGAGACC GGTCTCTTGCCATGTCTTC 

DVL1_GH 1 KAN GAAGACATTGCCAGAGACC GGTCTCTACTAATGTCTTC 

       
DVL2_AF 2 AMP GGTCTCAGGAGATGTCTTC GAAGACGTCGCTAGAGACC 

DVL2_AG 2 AMP GGTCTCAGGAGATGTCTTC GAAGACGTTGCCAGAGACC 

DVL2_AH 2 AMP GGTCTCAGGAGATGTCTTC GAAGACGTACTAAGAGACC 

DVL2_EH 2 AMP GGTCTCAGCTTATGTCTTC GAAGACGTACTAAGAGACC 

     

Table A-5 Destination vectors from 3Ab CIDAR MoClo part collection. Fusion sites are shown 

in purple, BsaI recognition sequences in red, and BbsI recognition sequences in blue. Black 

nucleotides indicate spacers required for appropriate placement of enzyme recognition sequences. 

Spacers can be made of any nucleotide, however standard sequences are used to reduce the 

potential for unintended restriction recognition sequences.   
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Part ID Description Cloned by 

B0015_DE Double terminator SI 

B0015_DF Double terminator SI 

B0015_DG Double terminator SI 

B0015_DH Double terminator TH 

B0030_BC Weiss RBS SI 

B0031_BC Weiss RBS SI 

B0032_BC Weiss RBS SI 

B0033_BC Weiss RBS SI 

B0034_BC Weiss RBS SI 

C0012_CD LacI - repressor CDS EA 

C0040_CD TetR - repressor CDS SI 

C0051_CD cI - repressor CDS MF 

C0062_CD luxR - repressor CDS EA 

C0071_CD rhlR - repressor CDS EA 

C0079_CD lasR - activator CDS MF 

C0080_CD araC - regulator CDS EA 

CyPet_CD Flourescent protein CDS EA 

DsRed_Express_CD Flourescent protein CDS EA 

DVL0_AB Destination vector SI 

DVL0_BC Destination vector SI 

DVL0_CD Destination vector SI 

DVL0_DE Destination vector SI 

DVL0_DF Destination vector SI 

DVL0_DG Destination vector SI 

DVL0_DH Destination vector  

DVL0_EB Destination vector SI 

DVL0_FB Destination vector  

DVL0_GB Destination vector SI 

DVL1_AE Destination vector SI 

DVL1_EF Destination vector SI 

DVL1_FG Destination vector SI 

DVL1_GH Destination vector SI 

DVL2_AF Destination vector SI 

DVL2_AG Destination vector SI 

DVL2_AH Destination vector SI 

DVL2_EG Destination vector  

DVL2_EH Destination vector SI 

DVL2_FH Destination vector  

E0030_CD YFP fluorescent protein CDS SI 

E0040m_CD GFP flourescent protein CDS SI 

E1010m_CD RFP fluorescent protein CDS SI 

E2-Crimson_CD Fluorescent protein CDS EA 

EBFP2_CD BFP fluorescent protein CDS TH 

I13453_FB pBAD promoter  
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Part ID Description Cloned by 

I13458_AF pC promoter and AraC CDS  

iRFP_CD iRFP fluorescent protein CDS TH 

J23100_AB Constitutive promoter MF 

J23100_EB Constitutive promoter MF 

J23101_AB Constitutive promoter MF 

J23101_EB Constitutive promoter MF 

J23102_AB Constitutive promoter MF 

J23102_EB Constitutive promoter MF 

J23103_AB Constitutive promoter MF 

J23103_EB Constitutive promoter SI 

J23104_AB Constitutive promoter MF 

J23104_EB Constitutive promoter MF 

J23105_AB Constitutive promoter MF 

J23105_EB Constitutive promoter MF 

J23106_AB Constitutive promoter MF 

J23106_EB Constitutive promoter SI 

J23107_AB Constitutive promoter MF 

J23107_EB Constitutive promoter SI 

J23108_AB Constitutive promoter MF 

J23108_EB Constitutive promoter MF 

J23109_AB Constitutive promoter MF 

J23109_EB Constitutive promoter MF 

J23110_AB Constitutive promoter SI 

J23110_EB Constitutive promoter MF 

J23111_AB Constitutive promoter MF 

J23111_EB Constitutive promoter MF 

J23112_AB Constitutive promoter MF 

J23112_EB Constitutive promoter MF 

J23113_AB Constitutive promoter TH 

J23113_EB Constitutive promoter MF 

J23114_AB Constitutive promoter MF 

J23114_EB Constitutive promoter MF 

J23115_AB Constitutive promoter SI 

J23115_EB Constitutive promoter SI 

J23116_AB Constitutive promoter SI 

J23116_EB Constitutive promoter SI 

J23117_AB Constitutive promoter SI 

J23117_EB Constitutive promoter MF 

J23118_AB Constitutive promoter SI 

J23118_EB Constitutive promoter MF 

J23119_AB Constitutive promoter SI 

J23119_EB Constitutive promoter SI 

LSSmOrange_CD Fluorescent protein CDS EA 

mAmetrine_CD Fluorescent protein CDS EA 
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Part ID Description Cloned by 

mCitrine_CD Fluorescent protein CDS EA 

mNeptune_CD Fluorescent protein CDS EA 

mOrange_CD Fluorescent protein CDS EA 

R0010_AB pLac promoter EA 

R0010_EB pLac promoter MF 

R0010_FB pLac promoter EA 

R0010_GB pLac promoter EA 

R0040_AB pTet promoter SI 

R0040_EB pTet promoter SI 

R0040_FB pTet promoter SI 

R0040_GB pTet promoter SI 

R0051_AB cI promoter  

R0051_EB cI promoter  

R0051_FB cI promoter  

R0051_GB cI promoter  

R0062_AB luxR pR promoter  

R0062_EB luxR pR promoter  

R0062_FB luxR pR promoter  

R0062_GB luxR pR promoter  

R0063_AB luxR pL promoter MF 

R0063_EB luxR pL promoter MF 

R0063_FB luxR pL promoter EA 

R0063_GB luxR pL promoter EA 

R0071_AB RhlR promoter  

R0071_EB RhlR promoter  

R0071_FB RhlR promoter  

R0071_GB RhlR promoter  

R0079_AB LasR promoter EA 

R0079_EB LasR promoter MF 

R0079_FB LasR promoter EA 

R0079_GB LasR promoter EA 

T-Sapphire_CD Fluorescent protein CDS EA 

   

Table A-6 Parts created as initial 3Ab CIDAR MoClo collection. All basic parts are in DVL0 

backbones (CAM resistance). All DVL vectors are as described in the previous table. Parts with no 

initials in the “Cloned by” column were not verified and archived by the time the new CIDAR MoClo 

standard was developed and parts were moved to a DVA backbone. Note: C0012_CD described 

here contained an illegal BsaI site which was repaired to create C0012m_CD(A) in the new library. 

A.4 Parts for CIDAR MoClo Library (Published version) 

A set of 93 plasmids were submitted to Addgene (#1000000059) 
as described in Chapter 3. Table A-7 describes the parts in the kit along 
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with their individual Addgene catalog number, CIDAR-ICE ID, and 
Benchling location. Additional plasmids can be requested directly from 
the CIDAR lab.  
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A.5 Constitutive promoter and RBS part type characterization 
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A total of 6 constitutive promoters and 6 RBS parts were selected for 

inclusion in the CIDAR MoClo Library. As described previously, an array of GFP 

expression plasmids was constructed to evaluate the strength of the RBS and 

constitutive promoter parts. Using this data, J23100, J23102, J23103, J23106, 

J23107, and J23116 were selected for the CIDAR MoClo Library along with all 6 

RBS parts tested (B0032m, B0033m, B0034m, BCD2, BCD8, and BCD12). A 

subset of the data presented in Figure 3-6 and Figure 3-7 is shown below for all 

combinations of these 6 promoters and 6 RBS parts. This chart is included to assist 

in selecting promoters and RBS parts in future designs. 

 

Figure A-2 CIDAR MoClo Library – Constitutive promoters and RBS parts, GFP 
expression plasmids. A subset of the data from Figure 3-6 and Figure 3-7, all 
combinations of constitutive promoter and RBS parts which were included in the CIDAR 
MoClo Library are shown here to aid in selection of parts for future designs. 
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A.6 Data tables for Chapter 3 figures 

 GFP RFP 

 Mean GSD+ GSD- Mean GSD+ GSD- 

pJ02B2X_AE(A) 82571 83011 82133 118142 121733 114658 

pJ02B2X_AE(K) 29396 32065 26948 50902 53843 48121 

pJ02B2X_GH(K) 25133 28327 22300 28993 30355 27691 

pJ024mX_AE(K) 22299 22918 21698 31844 34567 29335 

pJ02B12X_AE(K) 16242 17629 14965 33180 39642 27771 

pJ06B2X_AE(K) 12595 12866 12329 33840 36962 30981 

pJ07B12X_AE(K) 8362 8523 8205 17974 18831 17156 

pJ07B2X_AE(K) 7393 7808 7000 8292 9331 7370 

pJ02B2X_FG(K) 8080 8698 7505 5717 5966 5478 

pJ06B12X_AE(K) 7756 8187 7348 11128 12295 10072 

pJ064mX_AE(K) 6169 6318 6025 2062 2265 1878 

pJ024mX_EF(K) 5928 6474 5428 5646 6440 4950 

pJ02B12X_EF(K) 5924 5979 5869 11530 11602 11457 

pJ022mX_AE(K) 5899 6954 5004 3064 3066 3061 

pJ02B2X_EF(K) 5652 5906 5410 13451 14797 12228 

pJ14B12X_AE(K) 4982 5037 4927 10721 14867 7731 

pJ14B2X_AE(K) 4372 4404 4341 11930 15418 9231 

pJ074mX_AE(K) 4089 4475 3737 1284 1530 1077 

pJ02B2X_EF(A) 3953 4070 3840 3273 3363 3185 

pJ144mX_AE(K) 2617 2755 2486 2993 3029 2957 

pJ062mX_AE(K) 1981 2068 1897 1249 1371 1137 

pJ072mX_AE(K) 1124 1188 1063 944 1008 883 

pJ063mX_AE(K) 1119 1123 1115 534 662 431 

pJ06B8X_AE(K) 716 740 692 3696 4538 3010 

pJ073mX_AE(K) 698 742 656 364 404 329 

pJ022mX_EF(K) 498 555 446 315 331 299 

pJ07B8X_AE(K) 401 407 396 2806 2806 2806 

pJ142mX_AE(K) 194 204 184 178 185 171 

 

Table A-8 MEFL units - Geometric mean of fluorescence as displayed in Figure 3-3c. All 

samples were measured in triplicate and data is provided as geometric mean, high, and low. 
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 2CC GFP L1 2CC GFP L2 

 Mean GSD+ GSD- Mean GSD+ GSD- 

pJ02B2 3953 4070 3840 5682 5750 5615 

pJ02B12 4063 4173 3957 2587 2858 2343 

pJ024m 1500 1572 1431 3947 4193 3715 

pJ022m 449 462 436 1423 1440 1406 

pJ14B2 395 429 365 580 617 546 

pJ14B12 465 488 443 343 383 308 

pJ144m 208 212 204 158 159 156 

pJ142m 124 128 121 141 145 136 

       

 2CC RFP L1 2CC RFP L2 

 Mean GSD+ GSD- Mean GSD+ GSD- 

pJ02B2 118142 121733 114658 162270 173731 151564 

pJ02B12 70614 70944 70285 34736 37543 32139 

pJ024m 9618 9804 9436 6217 6540 5910 

pJ022m 3721 3922 3530 7221 7654 6813 

pJ14B2 3429 3595 3270 7422 7470 7375 

pJ14B12 3303 3396 3213 3678 3751 3606 

pJ144m 524 539 508 657 728 594 

pJ142m 152 155 149 216 226 206 

       

Table A-9 MEFL units - Geometric mean of fluorescence as displayed in Figure 3-5a. All 

samples were measured in triplicate and data is provided as geometric mean, high, and low. 

  



 

121 
 

 Kan Amp 

 Mean GSD+ GSD- Mean GSD+ GSD- 

pJ022mRm_AE 3064 3066 3061 3721 3922 3530 

pJ024mRm_AE 31844 34567 29335 9618 9804 9436 

pJ02B12Rm_AE 33180 39642 27771 70614 70944 70285 

pJ02B2Rm_AE 50902 53843 48121 118142 121733 114658 

pJ142mRm_AE 178 185 171 152 155 149 

pJ144mRm_AE 2993 3029 2957 524 539 508 

pJ14B12Rm_AE 10721 14867 7731 3303 3396 3213 

pJ14B2Rm_AE 11930 15418 9231 3429 3595 3270 

pJ02B2Gm_AE 19733 20775 18743 82571 83011 82133 

pJ02B2Gm_EF 5652 5906 5410 3953 4070 3840 

pJ02B12Gm_EF 5924 5979 5869 4063 4173 3957 

pJ024mGm_EF 5928 6474 5428 1500 1572 1431 

pJ022mGm_EF 498 555 446 449 462 436 

pJ14B2Gm_EF 2513 2831 2230 395 429 365 

pJ14B12Gm_EF 2785 3263 2377 465 488 443 

pJ144mGm_EF 3505 3920 3135 208 212 204 

pJ142mGm_EF 133 134 131 124 128 121 

pJ02B2Rm_EF 13170 13364 12979 3273 3363 3185 

 

Table A-10 MEFL units - Geometric mean of fluorescence as displayed in Figure 3-5b. All 

samples were measured in triplicate and data is provided as geometric mean, high, and low. 
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 _AE _EF 

 Mean GSD+ GSD- Mean GSD+ GSD- 

pJ022mRm(K) 3064 3066 3061 315 331 299 

pJ024mRm(K) 31844 34567 29335 5646 6440 4950 

pJ02B12Rm(K) 33180 39642 27771 11530 11602 11457 

pJ02B2Rm(K) 50902 53843 48121 13451 14797 12228 

pJ062mRm(K) 1249 1371 1137 97 102 93 

pJ063mRm(K) 534 662 431 76 77 75 

pJ064mRm(K) 2062 2265 1878 1732 2013 1489 

pJ06B12Rm(K) 11128 12295 10072 2573 3066 2159 

pJ06B2Rm(K) 33840 36962 30981 2703 3204 2280 

pJ06B8Rm(K) 3696 4538 3010 398 415 381 

pJ072mRm(K) 944 1008 883 93 100 86 

pJ073mRm(K) 364 404 329 75 75 74 

pJ074mRm(K) 1284 1530 1077 1177 1269 1091 

pJ07B12Rm(K) 17974 18831 17156 2522 2717 2341 

pJ07B2Rm(K) 8292 9331 7370 2797 3403 2300 

pJ07B8Rm(K) 2806 2806 2806 364 377 352 

pJ02B2Gm(K) 19733 20775 18743 5652 5906 5410 

pJ02B12Gm(K) 16242 17629 14965 5924 5979 5869 

pJ024mGm(K) 22299 22918 21698 5928 6474 5428 

pJ022mGm(K) 5899 6954 5004 498 555 446 

pJ14B2Gm(K) 4372 4404 4341 2513 2831 2230 

pJ14B12Gm(K) 4982 5037 4927 2785 3263 2377 

pJ144mGm(K) 2617 2755 2486 3505 3920 3135 

pJ142mGm(K) 194 204 184 133 134 131 

       

Table A-11 MEFL units - Geometric mean of fluorescence as displayed in Figure 3-5c. All 

samples were measured in triplicate and data is provided as geometric mean, high, and low. 
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Appendix B Additional experimental information 

B.1 Chapter 4 – Sequence structure of aldolase fusion proteins.  

 

 

 

Figure B-1 Sequence annotation of 5' HRA fusion protein sequence. Full sequence 

analysis available on Benchling. 
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Figure B-2 Sequence annotation of 5' R42A fusion protein sequence. Full sequence analysis 

available on Benchling. 
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B.2 Chapter 5 – pTetLacZDV:p024mC40_AF(A) structure and induction profile.  

 

Figure B-3 pTetLacZDV:J024mC40_AF(A) circuit. This circuit was evaluated for use 
in the pH biosensor experiments but failed to provide a distinctive pH change upon 
induction with anhydrous tetracycline (aTc). 

 

 

Figure B-4 pTet mediated pH induction time course. pTet mediated pH induction 
was less functional as a biosensor than the other circuits tested. Here cells were grown 
in 3 mL cultures and pH was measured at the defined intervals. Earlier time points may 
offer more functionality.  
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Appendix C Education 

CIDAR Educational Labs are found in supplementary files attached to 
this dissertation along with calculation files and an accompanying 
Powerpoint presentation.  

Also hosted on www.cidarlab.org. 

 

Appendix D External files 

Also hosted on www.cidarlab.org. 

D.1 MoClo assembly calculation files in Excel linked to part list.  

CIDARAssemblyCalculations.xlsx 

 

D.2 Raven file containing part list 

raven_CIDARMoCloLibrary.csv 

 

D.3 Eugene file 

CIDAR_MoClo_Eugene_final.eug 

 

Appendix E Development of modular biosensors for allergen detection 

This appendix describes the background and experimental design for a 

bioelectronic whole cell gluten biosensor designed in a modular fashion using 

MoClo and multiplex MoClo protocols. This project was discontinued. Preliminary 

progress is documented here to provide a resource for further study.  

E.1 Two component systems for biosensor development 

Recent work using domain exchange methods have utilized histidine kinase 

two-component systems and focused on the Per-Arnt-Sim (PAS) protein domain 

http://www.cidarlab.org/
http://www.cidarlab.org/
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family (Gu et al. 2000). PAS sensor domains are ubiquitous across all forms of life 

where they are involved in regulating gene expression in response to various 

inputs including light and oxygen. While the PAS sensor domain of a histidine 

kinase adopts a common globular structure, the effector domains of these proteins 

are often highly varied, functioning as kinases, transcription factors, and 

phosphodiesterases. This allows for a standardized yet versatile signal recognition 

motif with an expansive repertoire of response capabilities. This apparent 

modularity suggests the ability to interchange PAS domains to rewrite the natural 

biosensing pathways towards engineering novel biosensors and create unique 

gene regulatory systems.  

Multiple groups have shown this to be true both in vitro and in vivo primarily 

with LOV domains (Tar:EnvZ (Utsumi et al. 1989) YtlV:FixL (Moglich et al. 2009) 

Cph1:EnvZ (Levskaya et al. 2005, Tabor et al. 2009)). Named for their stimuli, light-

oxygen-voltage (LOV) domains bind flavin nucleotides, inducing an auto-

phosphorylation of the cytoplasmic kinase domain and subsequent transfer of this 

phosphate to a downstream response regulator (Gu et al. 2000). 

Previous research has shown successful domain exchange in histidine 

kinases, primarily in the development of optogenetic tools (Levskaya et al. 2005, 

Moglich et al. 2009, Tabor et al. 2009, Moglich and Moffat 2010) and provided 

insight towards further rearrangements, particularly with respect to the 

characteristics of the required Jα linker domain (Jin and Inouye 1994, Moglich et 
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al. 2009). This linker shows little homology among related TCS yet conserves a 

standard 7(n)-mer or 7(n)+2 pattern. This heptad periodicity is characteristic of α-

helical coiled coil and is required for correct function seemingly by controlling the 

orientation of the sensor and kinase domains as indicated by the lack of function 

in YtvA:FixL chimeric proteins which disrupted this periodicity (Moglich et al. 2009). 

Two papers specifically lay out design constraints for the development of future 

two-component chimeric proteins (Yoshida et al. 2007, Moglich et al. 2009). 

Skerker et al. have also shown the ability to rationally rewire two-component 

systems by mutating specific residues which dictate the interaction of the histidine 

kinase with its cognate response regulator predicted by analyzing the patterns of 

coevolution in two-component systems. By mutating as few as three amino acids 

of the EnvZ kinase domain, T250V, L254Y and A255R, the authors were able to 

show specific phosphorylation of the non-cognate response regulator RstA and 

amelioration of the natural phosphorylation of OmpR (Skerker et al. 2008). The 

independence of protein domains in histidine kinases suggests the possibility of a 

modular recombination method in rewiring the specificity of known two-component 

systems by domain exchange with Multiplex Modular Cloning. Additionally, the 

directed point mutation based rewiring of EnvZ demonstrates the potential for 

rational modification of phosphorylation targets.  
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E.2 Design of a Whole-Cell Rapid Bio-electronic Gluten Detector 

Glutamine binding protein (GlnBP) is a 26 kDa periplasmic E. coli protein 

which, in a monomeric form, is responsible for initializing the active transport of L-

glutamine into the cell. GlnBP has been shown previously to selectively bind 

gliadin, the alcohol soluble component of gluten. This induced the authors to 

design a bioelectronics sensor using purified GlnBP and a nanostructured porous 

silicone (PSi) waver with the mild success of detecting gluten at levels as low as 

2,000 ppm. Regardless of the inadequate sensing capabilities, the cost of purifying 

GlnBP and production of silicone wavers would have been prohibitive of a 

commercial detection kit. This research, however, provides a starting point for a 

synthetic biology approach to developing a gluten biosensor.  

By taking advantage of the natural selective binding of GlnBP to gliadin, the 

simultaneous iterative design methods developed above, and previous research 

upon the modularity of two-component systems, I propose to develop a rapid, 

accurate, sensitive and affordable whole-cell gluten biosensor.  

E.2.1 Development of a “Slow” Gluten Sensor 

The logical first step is the development of a transcription-based gluten-

sensing strain of E. coli through fusion of GlnBP to the transmembrane and 

cytoplasmic domains of EnvZ. All of the following experiments will performed in the 

EnvZΔ strain(Levskaya et al. 2005) of E. coli reported by Levskaya et al. (RU1012 

[MC4100 ara+ φ(OmpC-lacZ) 10-25 ΔenvZ::KanR]) or a derivative strain.   
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E.2.1.1 Experimental Design: GlnBP:EnvZ fusion 

Structural analysis and sequence homology of each family of proteins will 

be used to inform on the most probable position of splicing between these two 

proteins. GlnBP is 224 residues in length and contains two globular domains. The 

cleft formed between the larger domain (a.a. 1-84 and 186-224) and the smaller 

domain (a.a. 90-180) contains the ligand binding site. As such, it is likely the 

complete GlnBP coding sequence will be required for a successful chimeric 

protein.  
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Figure E-1 Whole cell bioelectronic gluten biosensor design. Gluten sensing and phospho-

activated cell lysis systems will be engineered separately using LacZα catalyzed pigmentation and 

OD as measures of gluten binding and lysis respectively. A selectable marker may also be used in 

the screening of GlnBP:EnvZ chimeras. Once calibrated, the two systems will be tuned and 

optimized for use with a bioelectronics interface to provide a digital report. 

The Cph1:EnvZ fusion created by Levskaya et al. used the same C-terminal 

229 a.a. fragment of EnvZ as was previously used in one of the first experiments 
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to demonstrate the modularity of two-component systems by rewiring the aspartate 

sensing Tar and oxygen responsive EnvZ histidine kinases in a similar manner. 

Initial attempts at developing this GlnBP:EnvZ fusion will use this same fragment 

as well as a degenerate linker library based upon the Cph1:EnvZ, Tar:EnvZ and 

YtlV:FixL chimeric protein sequences and extensive analysis histidine kinase linker 

domains included in these publications (Utsumi et al. 1989, Zhu and Inouye 2003, 

Levskaya et al. 2005, Moglich et al. 2009).   

In order to efficiently screen this library of chimeric proteins, the previously 

established reporter system will be used in which activation of OmpR by the 

cytoplasmic domain of EnvZ leads to the expression of LacZα and the 

pigmentation. In order for this screening method to function, a modified destination 

vector which does not use LacZα expression as a screenable marker will be 

required. Affinity of this chimeric protein for gliadin as a whole and the toxic peptide 

specifically will be determined.  

Potential troubleshooting: 

Other species of bacteria may be more appropriate as a biosensor 

especially in later stages of this development. However, as the MoClo library and 

protocols are currently oriented towards work in E. coli, initial attempts will be made 

in this species with a change of chassis as one of the first avenues of adjustment 

should the need arise. While EnvZ has historically been successful in rewiring 
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endeavors, another histidine kinase may be required for successful development 

of a GlnBP:Kinase chimera.  

E.2.2 Post-translational Control of Lysis  

The response regulator portion of the gluten sensor can be developed 

separately alongside the development of the GlnBP:EnvZ chimera. As 

phosphorylation is a common and rapid mechanism of controlling enzyme function, 

engineering phosphorylation (Johnson and Lewis 2001) dependent allosteric 

control of a lytic enzyme may be a viable method of rapidly inducing lysis as a 

response to gluten. Previously successful modular rearrangement of the Yersina 

and T4 phage lysin proteins, effectively rewired specificity (Lukacik et al. 2012) and 

lends support to the engineering of an allosterically controlled T4 lysin chimeric 

protein.  

Once again using a chimeric protein library, composed of the EnvZ cognate 

response regulator OmpR and a bacteriophage lysin protein, I propose to develop 

a phosphosensitive lysin protein which will induce cell lysis upon phosphorylation 

by GlnBP:EnvZ providing a rapid and amplified signal in response to gluten. 

E.2.2.1 Experimental Design: OmpR:Lysin Fusion 

Sequence, structure, host specificity and pathogenicity will factor into the 

selection of a subset of lytic enzymes for use in this design, beginning with the T4 

phage lysin. Informed by the rules and constraints generated in Aim 2 and analysis 

of both structure and sequence conservation in OmpR and the chosen lysin(s), 
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mixed clones of each will be created in a CXD format as described in 2.2.2. Due 

to the use of a lytic enzyme, tight inducible control of expression will be required 

to allow for growth of cells containing this chimeric gene sequence. Additionally, 

as most lysin proteins require the assistance of a second enzyme, a holin, (Young 

1992) to escape the cell membrane, expression of this enzyme could also be used 

as a means of control. Cultures will be grown to early log phase, induced, and 

monitored for changed in OD measured by plate reader to identify continued 

growth versus lysis. As a positive control for lysis, the chosen lysin will be screened 

as well. Ideally, an inactive form of the chosen lysin will also be available.  

Potential troubleshooting:  

Depending upon sequence analysis and the success of the initial round of 

chimeric proteins, different fragments of each protein may be identified and 

attempted. Additionally, internal insertion either protein may provide more 

successful fusions as described in 2.2.2. Preventing non-specific cell death will be 

difficult. Requiring multiple levels of control and may be prohibitive to this design 

strategy. Other means of triggering lysis may need to be considered as well as 

other forms of signal output. Some success has been seen in bioelectronics 

interfaces sensing luciferase (unpublished, Cambridge iGEM 2012) or using the 

metal reducing S. oneidensis to create a measurable charge (unpublished, 

Edinburgh iGEM 2012), though with low sensitivity.  
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E.2.3 Phospho-activated Lysin as the Response Regulator of GlnBP:EnvZ 

If the above experiments are successful, the two cassettes (or collection of 

iterations of each) would be combined in the same cell and screened for function. 

Once completed, lysis becomes an amplified signal for the presence of gluten and 

can be integrated with a bioelectronics interface to provide a digital readout. Such 

bioelectronics interfaces have been shown in the form of proteins fixed to CMOS 

sensors which can detect changes in voltage or pH due to biological stimuli (Ho et 

al. 2007, Manickam et al. 2010, Welch and Christen 2012). Adapting this system 

to detect cell lysis and the accompanied change in voltage would likely be a 

collaborative effort and conversations to this end have been initiated. 

E.2.3.1 Experimental Design: Gluten induced lysis 

As each half of this sense-response system will be engineered in a multiplex 

fashion and screened for function individually, it is possible multiple potential 

iterations of each will be available for further screening in a combined system. 

Assembly at this point is determined by the outcome of the previous experiments, 

but will be performed using MoClo in the most efficient manner possible. 

Adjustments for copy number and adjustments to expression levels may need to 

be performed and it is likely a gnomically encoded system will be required. Once 

a laboratory version of the gluten detection whole-cell biosensor is developed the 

assay will be simplified for use by consumers, ideally through a simple 

bioelectronic integration on par with a standard glucose blood sugar detection 

system.  
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Potential troubleshooting:  

While experiments will begin with OmpR and the T4 lysin protein, different 

molecules may function better in developing ligand-triggered lysis. Success with 

any of the previously proposed chimeric proteins will shed light upon design 

constraints and inform more successful designs, particularly in the case of the 

highly conserved modular histidine kinases. Even if both systems are working 

independently, the larger device may not function as a whole requiring reiterations 

upon the design. Once again, any reiterations will be informed by previous 

attempts and successes.  

E.3 Current Status 

Components of the EnvZ synthetic genetic light detection system were 

acquired from Addgene (pCph8 plasmid, #22869, chloramphenicol resistant) and 

from Dr. J. Clark Lagarias at the University of California – Davis (pPL-PCB plasmid, 

spectinomycin resistant). pPL-PCB contains pcyA and ho1 coding sequences 

under the control of a single promoter (Levskaya et al. 2005). The CP919 strain, 

an MC4100 E. coli derivative, carries a genomic pOmpC promoter driving 

expression of LacZα. CP919 functions as a reporter plasmid for pCph8 (acquired 

from Voigt Lab) and is resistant to both kanamycin and spectinomycin.  

The coding sequences for Cph8, pcyA and ho1 have been converted to 

MoClo CDS parts, designated as Cph8_CD, pcyA_CD and ho1_CD respectively. 

Transcription units containing these coding sequences were created and 
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designated pMAD1 and pMAD2 (ho1), pMAD3 and pMAD4 (pcyA), pMAD5 and 

pMAD6 (Cph8). Co-expression plasmids using pMAD1-4 were assembled and 

designated pMAD7-8 in _AF vectors. These are archived as mini preps and 

glycerol stocks alongside a glycerol stock of CP919.  

Exploration into the bioelectronic aspects of this sensor design led to the 

experiments documented in Chapter 5. In light of those results, while pH can 

function as an electronically integrated signal, there appears to be many 

contributing factors to adjusting pH of biological cultures. This noise may 

necessitate more manageable signal integration approaches.  
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