arXiv:1511.01844v3 [stat.ML] 24 Apr 2016

Published as a conference paper at ICLR 2016

A NOTE ON THE EVALUATION OF GENERATIVE MODELS

Lucas Theis* Aiiron van den Oord*f

University of Tiibingen Ghent University

72072 Tiibingen, Germany 9000 Ghent, Belgium
lucas@bethgelab.org aaron.vandenoord@ugent .be
Matthias Bethge

University of Tiibingen
72072 Tiibingen, Germany
matthias@bethgelab.org

ABSTRACT

Probabilistic generative models can be used for compression, denoising, inpaint-
ing, texture synthesis, semi-supervised learning, unsupervised feature learning,
and other tasks. Given this wide range of applications, it is not surprising that a
lot of heterogeneity exists in the way these models are formulated, trained, and
evaluated. As a consequence, direct comparison between models is often dif-
ficult. This article reviews mostly known but often underappreciated properties
relating to the evaluation and interpretation of generative models with a focus
on image models. In particular, we show that three of the currently most com-
monly used criteria—average log-likelihood, Parzen window estimates, and vi-
sual fidelity of samples—are largely independent of each other when the data is
high-dimensional. Good performance with respect to one criterion therefore need
not imply good performance with respect to the other criteria. Our results show
that extrapolation from one criterion to another is not warranted and generative
models need to be evaluated directly with respect to the application(s) they were
intended for. In addition, we provide examples demonstrating that Parzen window
estimates should generally be avoided.

1 INTRODUCTION

Generative models have many applications and can be evaluated in many ways. For density esti-
mation and related tasks, log-likelihood (or equivalently Kullback-Leibler divergence) has been the
de-facto standard for training and evaluating generative models. However, the likelihood of many
interesting models is computationally intractable. For example, the normalization constant of un-
normalized energy-based models is generally difficult to compute, and latent-variable models often
require us to solve complex integrals to compute the likelihood. These models may still be trained
with respect to a different objective that is more or less related to log-likelihood, such as contrastive
divergence (Hinton, 2002), score matching (Hyvéarinen, |2005)), lower bounds on the log-likelihood
(Bishopl [2006), noise-contrastive estimation (Gutmann & Hyvarinen, [2010), probability flow (Sohl-
Dickstein et al., [2011}), maximum mean discrepancy (MMD) (Gretton et al.,|2007; |Li et al.,|2015)),
or approximations to the Jensen-Shannon divergence (JSD) (Goodfellow et al., 2014)).

For computational reasons, generative models are also often compared in terms of properties more
readily accessible than likelihood, even when the task is density estimation. Examples include vi-
sualizations of model samples, interpretations of model parameters (Hyvérinen et al.,[2009), Parzen
window estimates of the model’s log-likelihood (Breuleux et al., [2009), and evaluations of model
performance in surrogate tasks such as denoising or missing value imputation.

In this paper, we look at some of the implications of choosing certain training and evaluation criteria.
We first show that training objectives such as JSD and MMD can result in very different optima than

*These authors contributed equally to this work.
"Now at Google DeepMind.

Published as a conference paper at ICLR 2016

MMD JSD

Figure 1: An isotropic Gaussian distribution was fit to data drawn from a mixture of Gaussians
by either minimizing Kullback-Leibler divergence (KLD), maximum mean discrepancy (MMD), or
Jensen-Shannon divergence (JSD). The different fits demonstrate different tradeoffs made by the
three measures of distance between distributions.

log-likelihood. We then discuss the relationship between log-likelihood, classification performance,
visual fidelity of samples and Parzen window estimates. We show that good or bad performance with
respect to one metric is no guarantee of good or bad performance with respect to the other metrics.
In particular, we show that the quality of samples is generally uninformative about the likelihood and
vice versa, and that Parzen window estimates seem to favor models with neither good likelihood nor
samples of highest possible quality. Using Parzen window estimates as a criterion, a simple model
based on k-means outperforms the true distribution of the data.

2 TRAINING OF GENERATIVE MODELS

Many objective functions and training procedures have been proposed for optimizing generative
models. The motivation for introducing new training methods is typically the wish to fit probabilistic
models with computationally intractable likelihoods, rendering direct maximum likelihood learning
impractical. Most of the available training procedures are consistent in the sense that if the data
is drawn from a model distribution, then this model distribution will be optimal under the training
objective in the limit of an infinite number of training examples. That is, if the model is correct, and
for extremely large amounts of data, all of these methods will produce the same result. However,
when there is a mismatch between the data distribution and the model, different objective functions
can lead to very different results.

Figure[T]illustrates this on a simple toy example where an isotropic Gaussian distribution has been fit
to a mixture of Gaussians by minimizing various measures of distance. Maximum mean discrepancy
(MMD) has been used with generative moment matching networks (Li et al.|[2015; Dziugaite et al.,
2015) and Jensen-Shannon divergence (JSD) has connections to the objective function optimized
by generative adversarial networks (Goodfellow et al.,[2014) (see box for a definition). Minimizing
MMD or JSD yields a Gaussian which fits one mode well, but which ignores other parts of the data.
On the other hand, maximizing average log-likelihood or equivalently minimizing Kullback-Leibler
divergence (KLD) avoids assigning extremely small probability to any data point but assigns a lot
of probability mass to non-data regions.

Understanding the trade-offs between different measures is important for several reasons. First,
different applications require different trade-offs, and we want to choose the right metric for a given
application. Assigning sufficient probability to all plausible images is important for compression, but
it may be enough to generate a single plausible example in certain image reconstruction applications
(e.g., Hays & Efros, 2007). Second, a better understanding of the trade-offs allows us to better
interpret and relate empirical findings. Generative image models are often assessed based on the
visual fidelity of generated samples (e.g.,|Goodfellow et al., 2014} Gregor et al., 2015} Denton et al.}
2015; [Li et al| 2015). Figure [I] suggests that a model optimized with respect to KLD is more
likely to produce atypical samples than the same model optimized with respect to one of the other
two measures. That is, plausible samples—in the sense of having large density under the target

Published as a conference paper at ICLR 2016

MMD (Gretton et al., 2007) is defined as,

MMDIp, g] = (E, o[k(x,x) — 2k(x,y) + k(y,¥")])? , (1)

where x, x’ are indepent and distributed according to the data distribution p, and y,y’ are
independently distributed according to the model distribution q. We followed the approach
of [Li et al| (2015), optimizing an empirical estimate of MMD and using a mixture of
Gaussian kernels with various bandwidths for k.

JSD is defined as
1 1
JSD|p, g] = SKLD[p || m] + KLDg || m], @

where m = (p+q)/2 is an equal mixture of distributions p and q. We optimized JSD directly
using the data density, which is generally not possible in practice where we only have access
to samples from the data distribution. In this case, generative adversarial networks (GANs)
may be used to approximately optimize JSD, although in practical applications the objective
function optimized by GANS can be very different from JSD. Parameters were initialized at
the maximum likelihood solution in all cases, but the same optimum was consistently found
using random initializations.

distribution—are not necessarily an indication of a good density model as measured by KLD, but
may be expected when optimizing JSD.

3 EVALUATION OF GENERATIVE MODELS

Just as choosing the right training method is important for achieving good performance in a given
application, so is choosing the right evaluation metric for drawing the right conclusions. In the
following, we first continue to discuss the relationship between average log-likelihood and the visual
appearance of model samples.

Model samples can be a useful diagnostic tool, often allowing us to build an intuition for why a
model might fail and how it could be improved. However, qualitative as well as quantitative analyses
based on model samples can be misleading about a model’s density estimation performance, as well
as the probabilistic model’s performance in applications other than image synthesis. Below we
summarize a few examples demonstrating this.

3.1 LOG-LIKELIHOOD

Average log-likelihood is widely considered as the default measure for quantifying generative image
modeling performance. However, care needs to be taken to ensure that the numbers measured are
meaningful. While natural images are typically stored using 8-bit integers, they are often modeled
using densities, i.e., an image is treated as an instance of a continuous random variable. Since the
discrete data distribution has differential entropy of negative infinity, this can lead to arbitrary high
likelihoods even on test data. To avoid this case, it is becoming best practice to add real-valued noise
to the integer pixel values to dequantize the data (e.g.,|Ur1a et al., | 2013} [van den Oord & Schrauwen,
2014;|Theis & Bethge, [2015).

If we add the right amount of uniform noise, the log-likelihood of the continuous model on the
dequantized data is closely related to the log-likelihood of a discrete model on the discrete data.
Maximizing the log-likelihood on the continuous data also optimizes the log-likelihood of the dis-
crete model on the original data. This can be seen as follows.

Consider images x € {0,...,255}" with a discrete probability distribution P(x), uniform noise

u € [0, 1[D, and noisy data y = x + u. If p refers to the noisy data density and q refers to the model
density, then we have for the average log-likelihood:

Published as a conference paper at ICLR 2016

lo dy = P(x log g(x + u) du 3
Jroosaray=3r0) [st w ®
<3 Peotog /H g(x + u) du)
=Y P(x)log Q(x),)

where the second step follows from Jensen’s inequality and we have defined
Q0= [alx-+u)du ©
[0,1(?

for x € ZP. The left-hand side in Equation [3|is the expected log-likelihood which would be es-
timated in a typical benchmark. The right-hand side is the log-likelihood of the probability mass
function @ on the original discrete-valued image data. The negative of this log-likelihood is equiv-
alent to the average number of bits (assuming base-2 logarithm) required to losslessly compress the
discrete data with an entropy coding scheme optimized for) (Shannon, [2001}).

SEMI-SUPERVISED LEARNING

A second motivation for using log-likelihood comes from semi-supervised learning. Consider a
dataset consisting of images X and corresponding labels) for some but not necessarily all of the
images. In classification, we are interested in the prediction of a class label y for a previously
unseen query image x. For a given model relating x, y, and parameters 6, the only correct way to
infer the distribution over y—from a Bayesian point of view —is to integrate out the parameters
(e.g.,|[Lasserre et al.|, [20006),

Py | %, X, Y) = / (6] X, V)py | x.8)de.)

With sufficient data and under certain assumptions, the above integral will be close to p(y | x, Om AP)s
where

Omap = argmaxg p(0 | X, D) ®)
= argmaxg [logp(0) +logp(X | 0) +logp(Y | X,0)]. 9)

When no training labels are given, i.e., in the unsupervised setting, and for a uniform prior over
parameters, it is therefore natural to try to optimize the log-likelihood, log p(X | 9).

In practice, this approach might fail because of a mismatch between the model and the data, because
of an inability to solve Equation [9] or because of overfitting induced by the MAP approximation.
These issues can be addressed by better image models (e.g.,|[Kingma et al.,2014), better optimization
and inference procedures, or a more Bayesian treatment of the parameters (e.g.,|Lacoste-Julien et al.,
2011; |Welling & Tehl 201 1J).

3.2 SAMPLES AND LOG-LIKELIHOOD

For many interesting models, average log-likelihood is difficult to evaluate or even approximate. For
some of these models at least, generating samples is a lot easier. It would therefore be useful if we
could use generated samples to infer something about a model’s log-likelihood. This approach is
also intuitive given that a model with zero KL divergence will produce perfect samples, and visual
inspection can work well in low dimensions for assessing a model’s fit to data. Unfortunately these
intuitions can be misleading when the image dimensionality is high. A model can have poor log-
likelihood and produce great samples, or have great log-likelihood and produce poor samples.

POOR LOG-LIKELIHOOD AND GREAT SAMPLES

A simple lookup table storing enough training images will generate convincing looking images but
will have poor average log-likelihood on unseen test data. Somewhat more generally we might

Published as a conference paper at ICLR 2016

consider a mixture of Gaussian distributions,
1
9(x) = ;N (3 %0, £°T), (10)

where the means x,, are either training images or a number of plausible images derived from the
training set (e.g., using a set of image transformations). If € is small enough such that the Gaussian
noise becomes imperceptible, this model will generate great samples but will still have very poor
log-likelihood. This shows that plausible samples are clearly not sufficient for a good log-likelihood.

Gerhard et al.| (2013) empirically found a correlation between some models’ log-likelihoods and
their samples’ ability to fool human observers into thinking they were extracted from real images.
However, the image patches were small and all models used in the study were optimized to mini-
mize KLD. The correlation between log-likelihood and sample quality may disappear, for example,
when considering models optimized for different objective functions or already when considering a
different set of models.

GREAT LOG-LIKELIHOOD AND POOR SAMPLES

Perhaps surprisingly, the ability to produce plausible samples is not only not sufficient, but also
not necessary for high likelihood as a simple argument by van den Oord & Dambre| (2015) shows:
Assume p is the density of a model for d dimensional data x which performs arbitrarily well with
respect to average log-likelihood and ¢ corresponds to some bad model (e.g., white noise). Then
samples generated by the mixture model

0.01p(x) + 0.99¢(x) (11)

will come from the poor model 99% of the time. Yet the log-likelihood per pixel will hardly change
if d is large:

log [0.01p(x) + 0.99¢(x)] > log [0.01p(x)] = log p(x) — log 100 (12)

For high-dimensional data, log p(x) will be proportional to d while log 100 stays constant. For
instance, already for the 32 by 32 images found in the CIFAR-10 dataset the difference between
log-likelihoods of different models can be in the thousands, while log(100) is only about 4.61 nats
(van den Oord & Dambrel [2015)). This shows that a model can have large average log-likelihood but
generate very poor samples.

GOOD LOG-LIKELIHOOD AND GREAT SAMPLES

Note that we could have also chosen ¢ (Equation[TT)) such that it reproduces training examples, e.g.,
by choosing ¢ as in Equation [I0] In this case, the mixture model would generate samples indistin-
guishable from real images 99% of the time while the log-likelihood would again only change by
at most 4.61 nats. This shows that any model can be turned into a model which produces realistic
samples at little expense to its log-likelihood. Log-likelihood and visual appearance of samples are
therefore largely independent.

3.3 SAMPLES AND APPLICATIONS

One might conclude that something must be wrong with log-likelihood if it does not care about a
model’s ability to generate plausible samples. However, note that the mixture model in Equation [IT]
might also still work very well in applications. While ¢ is much more likely a priori, p is going
to be much more likely a posteriori in tasks like inpainting, denoising, or classification. Consider
prediction of a quantity y representing, for example, a class label or missing pixels. A model with
joint distribution

0.01p(x)p(y | x) +0.99¢(x)q(y | x) (13)

may again generate poor samples 99% of the time. For a given fixed x, the posterior over y will be
a mixture

ap(y | x) + (1 —a)q(y | x), (14)

Published as a conference paper at ICLR 2016

A B
6,000 6,000 i 100
: - =1E]
S . [< 80
@ 4,000 4,000 | 'g\l‘ =
'cc> Eace S 60
e @
$ 2000 B oo - | g 40
El e a 20
1, =l 7]
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Shift [pixels] Shift [pixels] Shift [pixels]

Figure 2: A: Two examples demonstrating that small changes of an image can lead to large changes
in Euclidean distance affecting the choice of nearest neighbor. The images shown represent the
query image shifted by between 1 and 4 pixels (left column, top to bottom), and the corresponding
nearest neighbor from the training set (right column). The gray lines indicate Euclidean distance of
the query image to 100 randomly picked images from the training set. B: Fraction of query images
assigned to the correct training image. The average was estimated from 1,000 images. Dashed lines
indicate a 90% confidence interval.

where a few simple calculations show that
a =0 (lnp(x) —Ing(x) —1n99) (15)

and o is the sigmoidal logistic function. Since we assume that p is a good model, g is a poor model,
and x is high-dimensional, we have

Inp(x) > Ing(x) +1n99 (16)

and therefore o ~ 1. That is, mixing with ¢ has hardly changed the posterior over y. While the
samples are dominated by ¢, the classification performance is dominated by p. This shows that high
visual fidelity of samples is generally not necessary for achieving good performance in applications.

3.4 EVALUATION BASED ON SAMPLES AND NEAREST NEIGHBORS

A qualitative assessment based on samples can be biased towards models which overfit (Breuleux
et al.| 2009). To detect overfitting to the training data, it is common to show samples next to nearest
neighbors from the training set. In the following, we highlight two limitations of this approach and
argue that it is unfit to detect any but the starkest forms of overfitting.

Nearest neighbors are typically determined based on Euclidean distance. But already perceptually
small changes can lead to large changes in Euclidean distance, as is well known in the psychophysics
literature (e.g., Wang & Bovikl,|2009). To illustrate this property, we used the top-left 28 by 28 pixels
of each image from the 50,000 training images of the CIFAR-10 dataset. We then shifted this 28
by 28 window one pixel down and one pixel to the right and extracted another set of images. We
repeated this 4 times, giving us 4 sets of images which are increasingly different from the training
set. Figure[ZJA shows nearest neighbors of corresponding images from the query set. Although the
images have hardly changed visually, a shift by only two pixels already caused a different nearest
neighbor. The plot also shows Euclidean distances to 100 randomly picked images from the training
set. Note that with a bigger dataset, a switch to a different nearest neighbor becomes more likely.
Figure[2B shows the fraction of query images assigned to the correct training image in our example.
A model which stores transformed training images can trivially pass the nearest-neighbor overfitting
test. This problem can be alleviated by choosing nearest neighbors based on perceptual metrics, and
by showing more than one nearest neighbor.

A second problem concerns the entropy of the model distribution and is harder to address. There
are different ways a model can overfit. Even when overfitting, most models will not reproduce
perfect or trivially transformed copies of the training data. In this case, no distance metric will
find a close match in the training set. A model which overfits might still never generate a plausible
image or might only be able to generate a small fraction of all plausible images (e.g., a model
as in Equation [T0] where instead of training images we store several transformed versions of the

Published as a conference paper at ICLR 2016

| 0g-likelihood =@= Estimate

240 Model Parzen est. [nat]

= 200 ¢ Stacked CAE 121
% 160 | DBN 138
8 GMMN 147
= 120 + Deep GSN 214
= g0 Diffusion 220
2 GAN 225
- 40| True distribution 243
ol GMMN + AE 282

101 102 103 10% 105 106 107 k-means 313

Number of samples

Figure 3: Parzen window estimates for a Gaus-
sian evaluated on 6 by 6 pixel image patches
from the CIFAR-10 dataset. Even for small
patches and a very large number of samples, the
Parzen window estimate is far from the true log-

Table 1: Using Parzen window estimates to
evaluate various models trained on MNIST,
samples from the true distribution perform
worse than samples from a simple model trained
with k-means.

likelihood.

training images, or a model which only describes data in a lower-dimensional subspace). Because
the number of images we can process is vanishingly small compared to the vast number of possible
images, we would not be able to detect this by looking at samples from the model.

3.5 EVALUATION BASED ON PARZEN WINDOW ESTIMATES

When log-likelihoods are unavailable, a common alternative is to use Parzen window estimates.
Here, samples are generated from the model and used to construct a tractable model, typically a
kernel density estimator with Gaussian kernel. A test log-likelihood is then evaluated under this
model and used as a proxy for the true model’s log-likelihood (Breuleux et al., [2009). Breuleux
et al.| (2009) suggested to fit the Parzen windows on both samples and training data, and to use
at least as many samples as there are images in the training set. Following Bengio et al.[(2013a),
Parzen windows are in practice commonly fit to only 10,000 samples (e.g., Bengio et al.| [2013bj
Goodfellow et al., 2014 |Li et al., 2015; |Sohl-Dickstein et al., [2015). But even for a large number
of samples Parzen window estimates generally do not come close to a model’s true log-likelihood
when the data dimensionality is high. In Figure[3]we plot Parzen window estimates for a multivariate
Gaussian distribution fit to small CIFAR-10 image patches (of size 6 by 6). We added uniform noise
to the data (as explained in Section [3.1)) and rescaled between 0 and 1. As we can see, a completely
infeasible number of samples would be needed to get close to the actual log-likelihood even for this
small scale example. For higher dimensional data this effect would only be more pronounced.

While the Parzen window estimate may be far removed from a model’s true log-likelihood, one could
still hope that it produces a similar or otherwise useful ranking when applied to different models.
Counter to this idea, Parzen window estimates of the likelihood have been observed to produce rank-
ings different from other estimates (Bachman & Precupl 2015). More worryingly, a GMMN+AE
(L1 et al., [2015) is assigned a higher score than images from the training set (which are samples
from the true distribution) when evaluated on MNIST (Table[T). Furthermore it is relatively easy to
exploit the Parzen window loss function to achieve even better results. To illustrate this, we fitted
10,000 centroids to the training data using k-means. We then generated 10,000 independent samples
by sampling centroids with replacement. Note that this corresponds to the model in Equation [10}
where the standard deviation of the Gaussian noise is zero and instead of training examples we use
the centroids. We find that samples from this k-means based model are assigned a higher score than
any other model, while its actual log-likelihood would be —oo.

Published as a conference paper at ICLR 2016

4 CONCLUSION

We have discussed the optimization and evaluation of generative image models. Different metrics
can lead to different trade-offs, and different evaluations favor different models. It is therefore
important that training and evaluation match the target application. Furthermore, we should be
cautious not to take good performance in one application as evidence of good performance in another
application.

An evaluation based on samples is biased towards models which overfit and therefore a poor indi-
cator of a good density model in a log-likelihood sense, which favors models with large entropy.
Conversely, a high likelihood does not guarantee visually pleasing samples. Samples can take on
arbitrary form only a few bits from the optimum. It is therefore unsurprising that other approaches
than density estimation are much more effective for image synthesis (Portilla & Simoncelli, 2000;
Dosovitskiy et al., 2015} |Gatys et al.l |2015). Samples are in general also an unreliable proxy for a
model’s performance in applications such as classification or inpainting, as discussed in Section[3.3]

A subjective evaluation based on visual fidelity of samples is still clearly appropriate when the
goal is image synthesis. Such an analysis at least has the property that the data distribution will
perform very well in this task. This cannot be said about Parzen window estimates, where the data
distribution performs worse than much less desirable modelﬂ We therefore argue Parzen window
estimates should be avoided for evaluating generative models, unless the application specifically
requires such a loss function. In this case, we have shown that a k-means based model can perform
better than the true density. To summarize, our results demonstrate that for generative models there
is no one-fits-all loss function but a proper assessment of model performance is only possible in the
the context of an application.

ACKNOWLEDGMENTS

The authors would like to thank Jascha Sohl-Dickstein, Ivo Danihelka, Andriy Mnih, and Leon
Gatys for their valuable input on this manuscript.

REFERENCES

Bachman, P. and Precup, D. Variational Generative Stochastic Networks with Collaborative Shap-
ing. Proceedings of the 32nd International Conference on Machine Learning, pp. 1964-1972,
2015.

Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. Better mixing via deep representations. In
Proceedings of the 30th International Conference on Machine Learning, 2013a.

Bengio, Y., Thibodeau-Laufer, E., Alain, G., and Yosinski, J. Deep generative stochastic networks
trainable by backprop, 2013b. arXiv:1306.1091.

Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.

Breuleux, O., Bengio, Y., and Vincent, P. Unlearning for better mixing. Technical report, Universite
de Montreal, 2009.

Denton, E., Chintala, S., Szlam, A., and Fergus, R. Deep Generative Image Models using a Lapla-
cian Pyramid of Adversarial Networks. arXiv.org, 2015.

Dosovitskiy, A., Springenberg, J. T., and Brox, T. Learning to Generate Chairs with Convolutional
Neural Networks. In IEEE International Conference on Computer Vision and Pattern Recogni-
tion, 2015.

Dziugaite, G. K., Roy, D. M., and Ghahramani, Z. Training generative neural networks via maxi-
mum mean discrepancy optimization, 2015. arXiv:1505.0390.

Gatys, L. A., Ecker, A. S., and Bethge, M. Texture synthesis and the controlled generation of natural
stimuli using convolutional neural networks, 2015. arXiv:1505.07376.

'In decision theory, such a metric is called an improper scoring function.

Published as a conference paper at ICLR 2016

Gerhard, H. E., Wichmann, F. A., and Bethge, M. How sensitive is the human visual system to the
local statistics of natural images? PLoS Computational Biology, 9(1), 2013.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems
27,2014.

Gregor, K., Danihelka, 1., Graves, A., and Wierstra, D. DRAW: A recurrent neural network for
image generation. In Proceedings of the 32nd International Conference on Machine Learning,

2015.

Gretton, A., Borgwardt, K. M., Rasch, M., Scholkopf, B., and Smola, A. J. A kernel method for the
two-sample-problem. In Advances in Neural Information Processing Systems 20, 2007.

Gutmann, M. and Hyvirinen, A. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics, 2010.

Hays, J. and Efros, A. A. Scene completion using millions of photographs. ACM Transactions on
Graphics (SIGGRAPH), 26, 2007.

Hinton, G. E. Training Products of Experts by Minimizing Contrastive Divergence. Neural Compu-
tation, 14(8):1771-1800, 2002.

Hyvérinen, A., Hurri, J., and Hoyer, P. O. Natural Image Statistics: A Probabilistic Approach to
Early Computational Vision. Springer, 2009.

Hyvirinen, A. Estimation of non-normalized statistical models using score matching. Journal of
Machine Learning Research, pp. 695-709, 2005.

Kingma, D. P, Rezende, D. J., Mohamed, S., and Welling, M. Semi-supervised learning with deep
generative models. In Advances in Neural Information Processing Systems 27, 2014.

Lacoste-Julien, S., Huszar, F., and Ghahramani, Z. Approximate inference for the loss-calibrated
Bayesian. In Proceedings of the 14th International Conference on Artificial Intelligence and
Statistics, 2011.

Lasserre, J. A., Bishop, C. M., and Minka, T. P. Principled hybrids of generative and discriminative
models. In Proceedings of the Computer Vision and Pattern Recognition Conference, 2006.

Li, Y., Swersky, K., and Zemel, R. Generative moment matching networks. In Proceedings of the
32nd International Conference on Machine Learning, 2015.

Portilla, J. and Simoncelli, E. P. A parametric texture model based on joint statistics of complex
wavelet coefficients. International Journal of Computer Vision, 40:49-70, 2000.

Shannon, C. E. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing
and Communications Review, 5(1):3-55, 2001.

Sohl-Dickstein, J., Battaglino, P., and DeWeese, M. R. Minimum Probability Flow Learning. In
Proceedings of the 28th International Conference on Machine Learning, 2011.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and Ganguli, S. Deep unsupervised learning
using nonequilibrium thermodynamics. In Proceedings of the 32nd International Conference on
Machine Learning, 2015.

Theis, L. and Bethge, M. Generative Image Modeling Using Spatial LSTMs. In Advances in Neural
Information Processing Systems 28, 2015.

Uria, B., Murray, 1., and Larochelle, H. RNADE: The real-valued neural autoregressive density-
estimator. In Advances in Neural Information Processing Systems 26, 2013.

van den Oord, A. and Dambre, J. Locally-connected transformations for deep GMMs, 2015. Deep
Learning Workshop, ICML.

Published as a conference paper at ICLR 2016

van den Oord, A. and Schrauwen, B. Factoring Variations in Natural Images with Deep Gaussian
Mixture Models. In Advances in Neural Information Processing Systems 27, 2014.

Wang, Z. and Bovik, A. C. Mean squared error: Love it or leave it? [EEE Signal Processing
Magazine, 2009.

Welling, M. and Teh, Y. W. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In
Proceedings of the 28th International Conference on Machine Learning, 2011.

10

	1 Introduction
	2 Training of generative models
	3 Evaluation of generative models
	3.1 Log-likelihood
	3.2 Samples and log-likelihood
	3.3 Samples and applications
	3.4 Evaluation based on samples and nearest neighbors
	3.5 Evaluation based on Parzen window estimates

	4 Conclusion

